• Title/Summary/Keyword: Resiliently Mounted Equipment

Search Result 2, Processing Time 0.014 seconds

Structureborne Noise Transfer Analysis Using Pole Parameter Method for Resiliently Mounted Equipment (절점 해석 기법을 이용한 탄성지지 장비 시스템의 고체음 전달 해석)

  • Choi, Tae-Muk;Kim, Tae-Suk;Cho, Dae-Seung;Chung, Jung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.398-402
    • /
    • 2005
  • Structureborne noise induced by shipboard equipment is one of the most significant noise source of ships and can be effectively reduced by resiliently mounting them. In this paper, the pole parameter method is investigated for estimating the structureborne noise reduction of resiliently mounted equipment. In addition, we suggest how to evaluate pole parameters from dimensional and material information of each component consisting of resiliently mounted equipment. To validate and discuss the proposed method numerical analysis for single and double resiliently mounted equipment systems using both pole parameter method and FEM have been done.

  • PDF

Numerical Simulation of MIL-S-901D Heavy Weight Shock Test of a Double Resiliently Mounted Main Engine Module (이중 탄성지지 주기관 모듈의 MIL-S-901D 중중량 충격시험 수치 시뮬레이션)

  • Kwon, Jeong-Il;Lee, Sang-Gab;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.499-505
    • /
    • 2005
  • Underwater explosion shock response analysis of a nonlinear double resiliently mounted equipment on a MIL-S-901D Large floating Shock Platform(LFSP) was carried out using LS-DYNA3D/USA. As a nonlinear double resiliently mounted equipment, real main engine module of naval ship was considered, where the engine, bearing, and base frame including sound enclosure were treated as rigid bodies with six degrees of freedom. The nonlinear effects of resilient mounts on its shock response characteristics were examined, and the usefulness of our suggested method was also confirmed comparing with calculation results by the equipment maker.