• Title/Summary/Keyword: Resilient design

Search Result 194, Processing Time 0.034 seconds

Mechanical Characteristics of Asphalt Stabilized Soil (아스팔트 안정처리토의 역학적 특성 연구)

  • 박태순;최필호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.189-197
    • /
    • 2003
  • The treatment and hauling of surplus soils which occur from construction activity are costly and have been demanding a reasonable recycling method. This study presents laboratory test results regarding the mechanistic properties of asphalt stabilized soils. The foamed asphalt equipment which generates the asphalt bubble was used to mix the soil. The marshall stability, indirect tensile test, resilient modulus, creep test and triaxial test(UU) were conducted to find out the performance of the asphalt stabilized soil. The test results were compared with the samples that fabricated in different conditions(the samples without asphalt and the reinforced samples using 2% cement). The inclusion of the asphalt in the soil has improved the marshall stability, resilient modulus and moisture susceptibility, and the addition of the 2% cement has even more increased these properties. The amount of the fines and the optimum moisture contents for mixing affects the mechanistic properties and important parameters for mix design.

Characteristics of Rolling Noise Sources of Tram Resilient Wheels and Track (트램의 탄성차륜과 궤도의 전동 소음원 특성에 관한 연구)

  • Jang, Seungho;Ryue, Jungsoo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.212-222
    • /
    • 2015
  • The characteristics of noise emission from tram systems should be investigated in order to design and construct an urban tram network that raises fewer environmental noise problems. In this paper, the characteristics of rolling noise from a tram were studied and a desired stiffness of the rail supports was proposed using a noise prediction model. The mobilities of embedded rails and resilient wheels were predicted using the Timoshenko beam model and the finite element model, respectively. The predicted mobilities were compared with the measured results. Compared with the measured values, the calculated noise level near the track showed small errors for frequencies higher than 300 Hz. Then, the source strengths of rail and wheel components were examined by varying the rail supporting stiffness and the slab supporting stiffness so that suitable stiffness values could be estimated that would reduce noise radiated from rails and wheels but that would not greatly increase the ground vibration.

Experimental Study on the Evaluation of Behavior for Floating Track System Using a Resilient Rubber Mat (고무방진매트가 적용된 플로팅궤도시스템의 거동분석을 위한 실험적 연구)

  • Lee, Siyong;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • The objective of this study was to estimate the vibration reduction capacities of a floating track system using a resilient rubber mat, and to compare the results with the track support stiffness and track impact factor of a conventional slab track system by performing field tests using actual vehicles running along a service line. The theoretically designed track support stiffness and track impact factor were compared with the measured track support stiffness and track impact factor for each tested track. The calculated and measured track support stiffness of the floating track system were found to be similar, and the floating track system satisfied the design specifications of the track impact factor. The overall vibration level and track support stiffness of the floating track system were thereupon found to be significantly lower than those of the conventional slab track system. The experimental results thus showed that the vibration reduction effect of the floating track system is greater than that of the conventional slab track.

Alternative Method of Determining Resilient Modulus of Subbase Materials Using Free-Free Resonant Column Test (현장공진주시험을 이용한 보조기층 재료의 대체 $M_R$ 시험법)

  • Kweon, Gi-Cheol;Kim, Dong-Su
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.149-161
    • /
    • 2000
  • The stiffness of the subbase materials is represented by the resilient modulus, $M_R$, which are very important properties in the mechanistic design of flexible pavement system. However, the cyclic $M_R$ testing method is too complex, expensive, and time consuming to be applicable on a production basis. In this study, the alternative $M_R$ testing technique for subbase materials was developed using a free-free resonant column (FF-RC) test considering deformational characteristics of subbase materials. To estimate the deformational characteristics of subbase materials, effects of strain amplitude and mean effective stress on modulus of subbase materials were investigated. The $M_R$ values determined by alternative testing procedures matched well with those determined by standard $M_R$ test, showing the capability of the proposed methods being used in determining $M_R$ values.

  • PDF

The Design of Convergence Curriculum, the Historical Case of Medical Mission and the Research Initiative Outcome of Medicine and Theology (의학과 신학의 융합 교육과정 개발, 의료선교의 역사적 사례, 연구개발 성과에 관한 연구)

  • Son, Moon
    • Journal of Christian Education in Korea
    • /
    • v.65
    • /
    • pp.133-161
    • /
    • 2021
  • This study focuses on the vulnerability of our society and environment under the Covid-19 pandemic. The medical descriptions about severe acute respiratory syndrome coronavirus disease 2019 provide the serious manifestation of the SARS-CoV-2 virus and a new resilient hope of its vaccination. Moreover, with the perspective of feminist practical theology, the author explores a resilient possibility to reconstitute an ecological relationship between our society and environment. In addition, many people's depression in the time of Covid-19 is understood in the meaningful narrative of the relationship between integrity and despair to be stressed by Erikson in the perspective of Loder. Especially, this study focuses on the main stream of designing the convergence curriculum of medicine and theology to move toward the life wellbeing of community members, overcoming their difficult circumstances such as Covid-19.

Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles

  • Mahzad Esmaeili-Falak;Reza Sarkhani Benemaran
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.583-600
    • /
    • 2023
  • The resilient modulus (MR) of various pavement materials plays a significant role in the pavement design by a mechanistic-empirical method. The MR determination is done by experimental tests that need time and money, along with special experimental tools. The present paper suggested a novel hybridized extreme gradient boosting (XGB) structure for forecasting the MR of modified base materials subject to wet-dry cycles. The models were created by various combinations of input variables called deep learning. Input variables consist of the number of W-D cycles (WDC), the ratio of free lime to SAF (CSAFR), the ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviatoric stress (σd). Two XGB structures were produced for the estimation aims, where determinative variables were optimized by particle swarm optimization (PSO) and black widow optimization algorithm (BWOA). According to the results' description and outputs of Taylor diagram, M1 model with the combination of WDC, CSAFR, DMR, σ3, and σd is recognized as the most suitable model, with R2 and RMSE values of BWOA-XGB for model M1 equal to 0.9991 and 55.19 MPa, respectively. Interestingly, the lowest value of RMSE for literature was at 116.94 MPa, while this study could gain the extremely lower RMSE owned by BWOA-XGB model at 55.198 MPa. At last, the explanations indicate the BWO algorithm's capability in determining the optimal value of XGB determinative parameters in MR prediction procedure.

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

A Study on Deep Reinforcement Learning Framework for DME Pulse Design

  • Lee, Jungyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • The Distance Measuring Equipment (DME) is a ground-based aircraft navigation system and is considered as an infrastructure that ensures resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. The main problem of DME as a GNSS back up is a poor positioning accuracy that often reaches over 100 m. In this paper, a novel approach of applying deep reinforcement learning to a DME pulse design is introduced to improve the DME distance measuring accuracy. This method is designed to develop multipath-resistant DME pulses that comply with current DME specifications. In the research, a Markov Decision Process (MDP) for DME pulse design is set using pulse shape requirements and a timing error. Based on the designed MDP, we created an Environment called PulseEnv, which allows the agent representing a DME pulse shape to explore continuous space using the Soft Actor Critical (SAC) reinforcement learning algorithm.

A study on the Robust and Systolic Topology for the Resilient Dynamic Multicasting Routing Protocol

  • Lee, Kang-Whan;Kim, Sung-Uk
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.255-260
    • /
    • 2008
  • In the recently years, there has been a big interest in ad hoc wireless network as they have tremendous military and commercial potential. An Ad hoc wireless network is composed of mobile computing devices that use having no fixed infrastructure of a multi-hop wireless network formed. So, the fact that limited resource could support the network of robust, simple framework and energy conserving etc. In this paper, we propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. And the ontology clustering adopts a tree structure to enhance resilient against mobility and routing complexity. This proposed multicast routing protocol utilizes node locality to be improve the flexible connectivity and stable mobility on local discovery routing and flooding discovery routing. Also attempts to improve route recovery efficiency and reduce data transmissions of context-awareness. We also provide simulation results to validate the model complexity. We have developed that proposed an algorithm have design multi-hierarchy layered networks to simulate a desired system.

Introduction of Floor Impact Sound Insulation Performance Test Lab. of T Company (T사 바닥충격음 실험동 소개)

  • Baek, Geon-Jong;Shin, Hoon;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.17-20
    • /
    • 2008
  • To develop floor impact sound resilient materials of apartment house effectively, floor impact sound insulation performance test lab. was designed and constructed in T company. Introducing specification and basic performance of this lab. could be helpful in plan and design of another lab. Floor space size of this lab. is $4.2m{\times}5.5m$ and this size is similar with that of living room of usual apartment house's (about $100m^2$) and the height of lab. is 2.4m. Slab thickness is designed by 180mm. Frequency characteristics is similar to general apartment house. Reverberation time of sound receiving room displays 1.26sec in 125Hz by establishing sound-absorbing materials. For light weight impact sound insulation performance of concrete bare floor structure is estimated by $L_{i,AW}\;=\;73$ and for heavy weight is estimated by $L_{i,Fmax,AW}\;=\;50$. Sound pressure level distribution of sound receiving room is ranged very uniformly. With these results, floor impact sound resilient materials could be evaluated and the results could be trusted by comparison tests.

  • PDF