• Title/Summary/Keyword: Residue

Search Result 3,153, Processing Time 0.032 seconds

Translocation of Tolclofos-methyl from Ginseng Cultivated Soil to Ginseng (Panax ginseng C. A. Meyer) and Residue Analysis of Various Pesticides in Ginseng and Soil (토양 중 잔류된 Tolclofos-methyl의 인삼(Panax ginseng C. A. Meyer)에 대한 이행 및 잔류 특성)

  • Kim, Ji Yoon;Kim, Hea Na;Saravanan, Manoharan;Heo, Seong Jin;Jeong, Haet Nim;Kim, Jang Eok;Kim, Kwan Rae;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.130-140
    • /
    • 2014
  • Recently, some of the previous studies reported that tolclofos-methyl is still exist in ginseng cultivated soil, even though it is has been banned for ginseng. Therefore, the current study was aimed to examine the levels of absorption and translocation of tolclofos-methyl from ginseng cultivated soil to ginseng root and leaf stem for the period of 1 year. For this study, ginseng plants were transplanted in pots and treated with $5.0mg\;kg^{-1}$ of tolclofos-methyl (50% WP). At the end of each interval periods (every three months) the samples (soil, roots and leaf stems) were collected and analyzed the absorption and translocation levels of tolclofos-methyl using gas chromatography and mass spectrometry (GC-MS). The limit of quantitation of tolclofos-methyl was found to be $0.02mg\;kg^{-1}$ and 70.0~120.0% recovery was obtained with coefficient of variation of less than 10% regardless of sample types. In this study, a considerable amount of translocation of tolclofos-methyl residues were found in soil (4.28 to $0.06mg\;kg^{-1}$), root (7.09 to $1.54mg\;kg^{-1}$) and leaf stem (0.79 to $0.69mg\;kg^{-1}$). The results show that the tolclofos-methyl was absorbted and translocated from ginseng cultivated soil to ginseng root and ginseng leaf stem and found to be decreased time-coursely. Secondly, we were also analyzed soil, root and leaf stems samples from Hongcheon, Cheorwon, Punggi and Geumsan by GC-MS/MS (172 pesticides), LC-MS/MS (74 pesticides). In this study, 43 different pesticides were detected ($0.01{\sim}7.56mg\;kg^{-1}$) in soil, root and leaf stem. Further, tolclofos-methyl was detected 4 times separately in root sample alone which is less ($0.01{\sim}0.05mg\;kg^{-1}$) than their maximum residual limit (MRL) in ginseng. Consequently, the results from both studies indicate the residues of tolclofos-methyl found in ginseng cultivated soil and ginseng ensuring their safety level. Moreover, long-term evaluations are needed in order to protect the soil as well as ginseng free from tolclofos-methyl residues.

Monitoring of Pesticide Residues Concerned in Stream Water (전국 하천수 중 잔류우려 농약 실태조사)

  • Hwang, In-Seong;Oh, Yee-Jin;Kwon, Hye-Young;Ro, Jin-Ho;Kim, Dan-Bi;Moon, Byeong-Chul;Oh, Min-Seok;Noh, Hyun-Ho;Park, Sang-Won;Choi, Geun-Hyoung;Ryu, Song-Hee;Kim, Byung-Seok;Oh, Kyeong-Seok;Lim, Chi-Hwan;Lee, Hyo-Sub
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.173-184
    • /
    • 2019
  • BACKGROUND: This study was carried out to investigate pesticide residues from fifty streams in Korea. Water samples were collected at two times. Thee first sampling was performed from april to may, which was the season for start of pesticide application and the second sampling event was from august to september, which was a period for spraying pesticides multiple times. METHODS AND RESULTS: The 136 pesticide residues were analyzed by LC-MS/MS and GC/ECD. As a result, eleven of the pesticide residues were detected at the first sampling. Twenty eight of the pesticide residues were detected at the second sampling. Seven pesticides were frequently detected from more than 10 water samples. Ecological risk assessment (ERA) was carried out by using residual and toxicological data. Four scenarios were applied for the ERA. Scenario 1 and 2 were performed using LC50 values and mean and maximum concentrations. Scenarios 3 and 4 were conducted by NOEC values and mean and maximum concentrations. CONCLUSION: Frequently detected pesticide residues tended to coincide with the period of preventing pathogen and pest at paddy rice. As a result of ERA, five pesticides (butachlor, carbendazim, carbofuran, chlorantranilprole, and oxadiazon) were assessed to be risks at scenario 4. However, only oxadiazon was assessed to be a risk at scenario 3 for the first sampling. Oxadiazon was not assessed to be a risk at the second sampling. It seems to be temporary phenomenon at the first sampling, because usage of herbicides such as oxadiazon increased from April to march for preventing weeds at paddy fields. However, this study suggested that five pesticides which were assessed to be risks need to be monitored continuously for the residues.

Studies on the Physical Properties of Major Tree Barks Grown in Korea -Genus Pinus, Populus and Quercus- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究) -소나무속(屬), 사시나무속(屬), 참나무속(屬)을 중심(中心)으로-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.33-58
    • /
    • 1977
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resourses. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning its physical and mechanical properties. However, the study of tree bark grown in Korea have never been undertaken. In the present paper, an investigative study is carried out on the bark of three genus, eleven species representing not only the major bark trees but major species currently grown in Korea. For each species 20 trees were selected, at Suweon and Kwang-neung areas, on the same basis of the diameter class at the proper harvesting age. One $200cm^2$ segment of bark was obtained from each tree at brest height. Physical properties of bark studied are: bark density, moisture content of green bark (inner-, outer-, and total-bark), fiber saturation point, hysteresis loop, shrinkage, water absorption, specific heat, heat of wetting, thermal conductivity, thermal diffusivity, heat of combustion, and differential thermal analysis. The mechanical properties are studied on bending and compression strength (radial, longitudinal, and tangential). The results may be summarized as follows: 1. The oven-dry specific gravities differ between wood and bark, further more even for a given bark sample, the difference is obersved between inner and outer bark. 2. The oven-dry specific gravity of bark is higher than that of wood. This fact is attributed to the anatomical structure whose characters are manifested by higher content of sieve fiber and sclereids. 3. Except Pinus koraiensis, the oven-dry specific gravity of inner bark is higher than that of outer bark, which results from higher shrinkage of inner bark. 4. The moisture content of bark increases with direct proportion to the composition ratio of sieve components and decreases with higher percent of sclerenchyma and periderm tissues. 5. The possibility of determining fiber saturation point is suggested by the measuring the heat of wetting. With the proposed method, the fiber saturation point of Pinus densiflora lies between 26 and 28%, that of Quercus accutissima ranges from 24 to 28%. These results need be further examined by other methods. 6. Contrary to the behavior of wood, the bark shrinkage is the highest in radial direction and the lowest in longitudinal direction. Quercus serrata and Q. variabilis do not fall in this category. 7. Bark shows the same specific heat as wood, but the heat of wetting of bark is higher than that of wood. In heat conductivity, bark is lower than wood. From the measures of oven-dry specific gravity (${\rho}d$) and moisture fraction specific gravity (${\rho}m$) is devised the following regression equation upon which heat conductivity can be calculated. The calculated heat conductivity of bark is between $0.8{\times}10^{-4}$ and $1.6{\times}10^{-4}cal/cm-sec-deg$. $$K=4.631+11.408{\rho}d+7.628{\rho}m$$ 8. The bark heat diffusivity varies from $8.03{\times}10^{-4}$ to $4.46{\times}10^{-4}cm^2/sec$. From differential thermal analysis, wood shows a higher thermogram than bark under ignition point, but the tendency is reversed above ignition point. 9. The modulus of rupture for static bending strength of bark is proportional to the density of bark which in turn gives the following regression equation. M=243.78X-12.02 The compressive strength of bark is the highest in radial direction, contrary to the behavior of wood, and the compressive strength of longitudinal direction follows the tangential one in decreasing order.

  • PDF