• Title/Summary/Keyword: Residual volume

Search Result 423, Processing Time 0.031 seconds

Mathematical model and sensitivity analysis for describing emulsification in ASP flooding

  • Zhang, Chengli;Wang, Peng;Song, Guoliang
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.335-343
    • /
    • 2018
  • Alkali-surfactant polymer flooding has become an important technique to improve oil recovery following the development of oil fields while the function of emulsification in enhanced oil recovery is rarely considered in the existing mathematical model for numerical simulation. In this paper, the mechanism of improving the recovery of the emulsification was analyzed in ASP flooding, and a relatively perfect mathematical model with deep filtration-theory was established, in which oil-water volume equation, saturation equation, viscosity equation, and permeability reduction equation are included. The new model is used to simulate the actual block of an oil field; the simulated results of the new model and an old model without considering the emulsification are compared with the actual well history. It is found that new model which is easy to be realized in numerical simulation has a high precision fitting, and the effect of adding oil and decreasing water is obvious. The sensitivity of emulsification was analyzed, and the results show that the water reducing funnel becomes wider and the rate of water cut decreases rapidly with the increase of emulsifying capacity, and then the rate of recovery slows down. The effect of increasing oil and decreasing water is better, and the degree of recovery increases. The emulsification of the ASP flooding is maintained at a moderate level, which corresponds to ${\Phi}=0.2$ in the new model, and the emulsification is applied to realize the general mathematical quantitative description, so as to better guide the oilfield development.

Predicting soil-water characteristic curves of expansive soils relying on correlations

  • Ahmed M. Al-Mahbashi;Muawia Dafalla;Mosleh Al-Shamrani
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.625-633
    • /
    • 2023
  • The volume changes associated with moisture or suction variation in expansive soils are of geotechnical and geoenvironmental design concern. These changes can impact the performance of infrastructure projects and lightweight structures. Assessment of unsaturated function for these materials leads to better interpretation and understanding, as well as providing accurate and economic design. In this study, expansive soils from different regions of Saudi Arabia were studied for their basic properties including gradation, plasticity and shrinkage, swelling, and consolidation characteristics. The unsaturated soil functions of saturated water content, air-entry values, and residual states were determined by conducting the tests for the entire soil water characteristic curves (SWCC) using different techniques. An attempt has been made to provide a prediction model for unsaturated properties based on the basic properties of these soils. Once the profile of SWCC has been predicted the time and cost for many tests can be saved. These predictions can be utilized in practice for the application of unsaturated soil mechanics on geotechnical and geoenvironmental projects.

A Study on the Quality Characteristics of Morning-Rolls with Bamboo Leaf Powder (대잎 분말을 첨가한 모닝롤의 품질 특성)

  • Kim, Mi-Kyung;Song, Byeng-Chun
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.5
    • /
    • pp.639-645
    • /
    • 2008
  • The objective of this study was to assess the quality characteristics of morning-rolls containing various levels (0, 4, 8, and 12%) of bamboo leaf powder. The results demonstrated that morning-roll volume decreased with increasing amounts of bamboo leaf powder, and as the bamboo leaf powder content increased, the Hunter's color 'L', 'a' and 'b' values were significantly reduced (p<0.05). For the amylogram characteristics, the addition of bamboo leaf powder to the flour reduced peak viscosity, holding strength, final viscosity, and setback. The results of the sensory evaluation demonstrated that control (0%) and 8% addition of bamboo leaf powder had the best scores in taste, color, flavor, texture, appearance, softness, wetness, residual mouth feel, and overall acceptability. Thus, it appears that by using 8% additions of bamboo leaf powder, the functionality, nutritional composition, taste, color, and flavor of morning-rolls containing bamboo leaf powder can be developed. This result will support the development of better quality bamboo-leaf morning-rolls.

Comparison of CT based-CTV plan and CT based-ICRU38 plan in Brachytherapy Planning of Uterine Cervix Cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거한 치료계획의 비교)

  • Cho, Jung-Ken;Han, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.105-110
    • /
    • 2007
  • Purpose : In spite of recent remarkable improvement of diagnostic imaging modalities such as CT, MRI, and PET and radiation therapy planing systems, ICR plan of uterine cervix cancer, based on recommendation of ICRU38(2D film-based) such as Point A, is still used widely. A 3-dimensional ICR plan based on CT image provides dose-volume histogram(DVH) information of the tumor and normal tissue. In this study, we compared tumor-dose, rectal-dose and bladder-dose through an analysis of DVH between CTV plan and ICRU38 plan based on CT image. Method and Material : We analyzed 11 patients with a cervix cancer who received the ICR of Ir-192 HDR. After 40Gy of external beam radiation therapy, ICR plan was established using PLATO(Nucletron) v.14.2 planing system. CT scan was done to all the patients using CT-simulator(Ultra Z, Philips). We contoured CTV, rectum and bladder on the CT image and established CTV plan which delivers the 100% dose to CTV and ICRU plan which delivers the 100% dose to the point A. Result : The volume$(average{\pm}SD)$ of CTV, rectum and bladder in all of 11 patients is $21.8{\pm}6.6cm^3,\;60.9{\pm}25.0cm^3,\;111.6{\pm}40.1cm^3$ respectively. The volume covered by 100% isodose curve is $126.7{\pm}18.9cm^3$ in ICRU plan and $98.2{\pm}74.5cm^3$ in CTV plan(p=0.0001), respectively. In (On) ICRU planning, $22.0cm^3$ of CTV volume was not covered by 100% isodose curve in one patient whose residual tumor size is greater than 4cm, while more than 100% dose was irradiated unnecessarily to the normal organ of $62.2{\pm}4.8cm^3$ other than the tumor in the remaining 10 patients with a residual tumor less than 4cm in size. Bladder dose recommended by ICRU 38 was $90.1{\pm}21.3%$ and $68.7{\pm}26.6%$ in ICRU plan and in CTV plan respectively(p=0.001) while rectal dose recommended by ICRU 38 was $86.4{\pm}18.3%$ and $76.9{\pm}15.6%$ in ICRU plan and in CTV plan, respectively(p=0.08). Bladder and rectum maximum dose was $137.2{\pm}50.1%,\;101.1{\pm}41.8%$ in ICRU plan and $107.6{\pm}47.9%,\;86.9{\pm}30.8%$ in CTV plan, respectively. Therefore, the radiation dose to normal organ was lower in CTV plan than in ICRU plan. But the normal tissue dose was remarkably higher than a recommended dose in CTV plan in one patient whose residual tumor size was greater than 4cm. The volume of rectum receiving more than 80% isodose (V80rec) was $1.8{\pm}2.4cm^3$ in ICRU plan and $0.7{\pm}1.0cm^3$ in CTV plan(p=0.02). The volume of bladder receiving more than 80% isodose(V80bla) was $12.2{\pm}8.9cm^3$ in ICRU plan and $3.5{\pm}4.1cm^3$ in CTV plan(p=0.005). According to these parameters, CTV plan could also save more normal tissue compared to ICRU38 plan. Conclusion : An unnecessary excessive radiation dose is irradiated to normal tissues within 100% isodose area in the traditional ICRU plan in case of a small size of cervix cancer, but if we use CTV plan based on CT image, the normal tissue dose could be reduced remarkably without a compromise of tumor dose. However, in a large tumor case, we need more research on an effective 3D-planing to reduce the normal tissue dose.

Analysis of Tree Growth Characteristics by First and Second Thinning in Korean White Pine Plantations (잣나무 인공림의 1차 및 2차 간벌에 따른 입목생장 특성 분석)

  • Lee, Daesung;Jung, Sunghoon;Choi, Jungkee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.150-164
    • /
    • 2022
  • This study was conducted to provide basic information for the development of silvicultural guidelines and manuals. This was achieved through analysis of tree and stand characteristics according to the first and second thinning in Korean white pine plantations. Data were collected from permanent plots installed at Korean white pine plantations according to thinning intensity, and residual tree and stand variables, including diameter at breast height (DBH), volume, and mortality at age 19-43, were analyzed using data repeatedly collected in 4-5 measurements by experiments. According to one-way variance of analysis, tree DBH and volume were significantly different according to thinning intensity (p<0.05). DBH distribution was skewed to the left side over time as thinning intensity was heavier. Thus, tree DBH values were larger in heavy thinning plots with increased age. The periodic annual increment (PAI) of DBH was higher with heavier thinning intensity and fewer years after thinning. The PAI range by thinning intensity was 0.48-0.95 cm/year at age 19-24. In addition, the PAI increased in heavy thinning plots after the second thinning; The PAI range by thinning intensity was 0.29-0.67 cm/year after the second thinning at age 37-42. The PAI of tree volume differed according to thinning intensity, and the PAI value did not decrease obviously, in contrast to the pattern of the DBH PAI. Stand volume was generally higher in high-density stands, and the PAI of stand volume was high in unthinned and light thinning plots. Mortality was highest in unthinned plots, and the differences in mortality according to thinning intensity increased over time. Consequently, the growth of DBH and tree volume was lower as stand density increased, but this growth was facilitated with appropriate first and second thinning operations.

Spectrophotometric Determination of Aluminium Ion in Drinking Water by Flow Injection Analysis (흐름주입분석법에 의한 음용수 중 알루미늄 이온의 분광광도법 정량)

  • Choi, Yong-Wook;Jin, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.422-428
    • /
    • 2000
  • Optimum analytical conditions of the aluminium ion were established by flow injection analysis. Eriochrome Cyanine R(ECR) dye reacts with the aluminium ion at pH 6.0 to form a complex that exhibits maximum absorption at 535 nm. Reaction conditions including the mixing and the reaction coil length, the concentration and the pH of the buffer solutio, temperature, and injection loop volume were optimized to intro-duce this reaction into flow injection analysis. The results were as follows. A mixing coil length of 0.5 m and a reaction coil length of 4.0 m, the pH 6.0 and 1M of acetate buffer solution, the ECR concentration of 0.56 mM, the reaction temperature of 40$^{\circ}C$, the injection loop volume of 300${\mu}L$ were chosen as optimum conditions. Under these conditions the detection limit of the aluminiumion was less than 0.05 mg/L and the repeatability was better than 1%. A sampling frequency of 24 times for an hour was achieved. Interfering ions such as $F^-$, HP$O_4^{2-}$, $Fe^{2+}$, $Fe^{3+}$, $Mn^{2+}$, and other anions were tested, interference did not occur up to 1,000mg/L of ion concentration and up to 2,CO0mg/L of sulfate ion con-centration. This method was applied for the determination of aluminium ion in tap water and ground water of Jeonju and the Gochang area. The results showed that the aluminium residual in tap water of the Jeonju area was at a mean of 0.478mg/L and that in tap water of the Gochang area was at a mean of 0.278mg/L. Aluminium ion residual of the tap waters in the Jeonju area was higher level than that in the Gochang area. Aluminium residual in the ground water of the Jeonju area was 0.386 mg/L and was lower compared to 0.564 mg/L for the Gochang area.

  • PDF

Changes in the Concentrations of the Tap Water Chlorination By-Products by Heating during Cooking, and Human Ingestion Exposure (조리시 가열에 따른 수돗물 중 염소소독부산물의 농도 변화와 인체 섭취 노출)

  • 김희갑;이수형
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.35-43
    • /
    • 1999
  • A number of disinfection by-products (DBPs) are formed as a result of the addition of chlorine into the public water supply and some of them have been suggested to cause adverse health effects on humans. However, the estimation of human ingestion exposure to each DBP has been performed simply by multiplying the concentration of a chemical in the cold tap water by the volume of water consumed during a given period of time. However, a questionnaire concerning water consumptions administered to sixty people residing in Chunchon showed that the volume of tap water consumed accounted for approximately 70% of the total volume of water consumed and that of heated water represented approximately 94% of tap water ingested. Heating durations for water-containing foods (e. g., soups and pot stews) and heated beverages (e. g., barley tea) were grouped into 10, 20, 30, and 35 minutes. Based on these time frames, an aluminum pot containing one liter of tap water was heated for the above respective time periods using a gas range to determine the variations of the concentrations of individual DBPs by heating. The pH and total residual chlorine were measured before and after heating. Collected water samples were carried to the laboratory and analyzed for eight DBPs and total organic carbon. Chloroform, bromodichloromethane, chloral hydrate, 1, 2-dichloro-2-propanone, 1, 1, 1-trichloropropanone, and dichloroacetonitrile were not detected following heating for 10 minutes and longer. The concentration of dichloroacetic acid (DCAA) was elevated with heating duration, resulting in the averages of 2.0, 3.1, 4.7, and 12 times the initial concentration, respectively, for 10, 20, 30, and 35 minute heating periods. On the other hand, the concentration of trichloroacetic acid (TCAA) decreased with heating duration, with 0.65, 0.40, 0.34, and 0.19 times lower than the initial concentration. Therefore, it is suggested that ingestion exposure to DCAA increases with heating duration but that ingestion exposure to TCAA decreases. In addition, while the amount of DCAA was elevated at the initial time periods (10 or 20 minutes) and then slowly decreased, that of TCAA was rapidly decreased. In conclusion, water-heating processes during cooking influence the concentrations of individual DBPs in the tap water, with lower levels for volatile DBPs and TCAA, and higher levels for DCAA. Therefore, concentration change needs to be taken into consideration in the estimation of human ingestion exposure to DBPs.

  • PDF

Evaluation of the Volume Changes of Grafted Bone Materials in Sinus Augmentation Procedure Using Dental Cone-beam CT (치과용 Cone-beam CT를 이용한 상악동 골 이식 후 나타난 골 이식재의 부피 변화평가)

  • Ohn, Byung-Hun;Seon, Hwa-Kyeong;Chee, Young-Deok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • To evaluate the 3-dimensional features of the grafted bone with maxillary sinus augmentation and to assess the relation between the degree of bone resorption and the type of bone grafting source and implant, and the operation method. A retrospective chart review of patients receiving sinus augmentation procedures for implant positioning was conducted: radiographic analysis of the volume and area of bone grafts was performed. The volumetric remodeling.measured at 6 months after implant positioning as the percentage of residual bone graft.was correlated to type of graft materials and operation methods. 53 dental implants positioned with sinus bone graft in 15 patients at Wonkwang University Sanbon Dental Hospital. Computed tomography scans,taken implant positioning after 6 months, showed greater resorption values for the group of $Puros^{(R)}$ graft alone from the group of mixed with $Puros^{(R)}$ and various bone graft (P<0.05, respectively). And resorption values according to operation methods have statistically significant difference(P<0.05). Volume change ratio of bone graft showed greater values for the group of delayed implant position from the group of simultaneously implant placement with bone graft. Retrospective data analysis shows that the method of graft with $Puros^{(R)}$ alone may occur greater resorption of graft materials than mixed graft material with $Puros^{(R)}$ and other graft materials. The group of simultaneously implant placement with bone graft also display smaller resorption ratio of bone graft than the group of delayed implant placement.

Development of Tree Stem Weight Equations for Larix kaempferi in Central Region of South Korea (중부지역 일본잎갈나무의 수간중량 추정식 개발)

  • Ko, Chi-Ung;Son, Yeong-Mo;Kang, Jin-Taek;Kim, Dong-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.184-192
    • /
    • 2018
  • In this study was implemented to develop tree stem weight prediction equation of Larix kaempferi in central region by selecting a standard site, taking into account of diameter and position of the local trees. Fifty five sample trees were selected in total. By utilizing actual data of the sample trees, 11 models were compared and analyzed in order to estimate four different kinds of weights which include fresh weight, ovendry outside bark weight, ovendry inside bark weight and merchantable weight. As to estimate its weight, the study has classified its model according to three parameters: DBH, DBH and height, and volume. The optimal model was chosen by comparing the performance of model using the fit index and standard error of estimate and residual distribution. As a result, the formula utilizing DBH (Variable 1) is $W=a+bD+cD^2$ (3) and its fit index was 90~92%. The formula for DBH and height (Variable 2) is $W=aD^bH^C$ (8) and its fit index was 97~98%. In summation, Variable 2 model showed higher fitness than Variable 1 model. Moreover, fit index of formula for total volume and merchantable volume (W=aV) showed high rate of 98~99%, as well as resulting 7.7-17.5 with SEE and 8.0-10.0 with CV(%) which lead to predominately high fitness in conclusion. This study is expected to provide information on weights for single trees and furthermore, to be used as a basic study for weight of stand unit and biomass estimation equations.

Numerical Modeling of Circulation Characteristics in the Kwangyang Estuarine System (광양만 권역의 해수순환 수치모델 실험)

  • Kim, Baek Jin;Ro, Young Jae;Jung, Kwang Young;Park, Kwang Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.253-266
    • /
    • 2014
  • The ECOM3D is used to study the circulation characteristics and density current from the Sumjin River runoff in the Kwangyang Estuarine System, South Sea, Korea. Annual mean value of $120m^3/s$ was imposed from the Sumjin River. The numerical model results in terms of tidal height, current and salinity field show satisfactory with skill scores over 90%. The current velocity showed the range of 1~2.5 m/s during flood and ebb phases. In particular, very strong flow occur in the narrow Channels of Noryang, Daebang and Changson exceeding over 2.0 m/s. The tidal residual currents in the various locations in the Kwangyang Estuary showed the range of 1~21 cm/s, The density-driven current through the Yeosu and Noryang Channels are about 12 cm/s and 4 cm/s, respectively. The current path through the Yeosu Channel is deflected toward west Bank. Based on budget analysis of the volume flux, the volume flux through the Yeosu Channel and the Noryang Channel were estimated to be 97.4 and $22.1m^3/s$ accounting for the 81.5% and 18.5% of total flux, respectively.