• Title/Summary/Keyword: Residual uncertainty

Search Result 66, Processing Time 0.023 seconds

Residual Echo Suppression Based on Tracking Echo-Presence Uncertainty (Tracking Echo-Presence Uncertainty 기반의 잔여 반향 억제)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.955-960
    • /
    • 2009
  • In this paper, we propose a novel approach to residual echo suppression (RES) algorithm based on tracking echo-presence uncertainty (TEPU) to improve the performance of acoustic echo suppression (AES) in the frequency domain. In the proposed method, the ratio of the microphone input and the echo-suppressed output signal power is employed as the threshold value for the decision rule to estimate the echo-presence uncertainty applied to the RES filter. The proposed RES scheme estimates the echo presence uncertainty in each frequency bin and effectively reduces residual echo signal in a simple fashion. The performance of the proposed algorithm is evaluated by the objective test and yields better results compared with the conventional schemes.

Uncertainty Quantification of Welding Residual Stress Analysis based on Domestic Organizations Round-Robin Evaluation (라운드로빈 평가 결과에 기반한 국내 기관의 용접잔류응력 해석 분포의 불확실성 평가)

  • Sung-Kyun Jung;Jun-Young Jeon;Chan-kyu Kim;Chang-Sik Oh;Sung-Sik Kang;Chang-Young Oh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • This paper examines the quantification of uncertainty for welding residual stresses in dissimilar metal welds used in nuclear power plants. A mock-up of a dissimilar metal weld pipe, consisting of carbon and stainless steel pipes, was fabricated to measure the residual stress. A Round-Robin analysis was conducted by Korean institutions to assess the welding residual stress. The analysis was carried out in the second order, and the data obtained by each institution was evaluated based on the information provided. Using the Round-Robin results, the distribution of uncertainty in welding residual stresses among Korean institutions was evaluated. The quantification of uncertainty for Korean institutions was found to have a wider range compared to the distribution of welding residual stresses observed in overseas institutions. This study is considered useful in the establishment of comprehensive strategies for evaluating welding residual stress analysis methods used by domestic institutions.

Measurement Uncertainty for Analysis of Residual Carbon in a Tungsten-15% Copper MIM part (텅스텐-15% 카파 사출성형체의 잔류 탄소량 분석에 대한 측정 불확도)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.410-414
    • /
    • 2007
  • Carbon contamination from the binder resin is an inherent problem with the metal powder injection molding process. Residual carbon in the W-Cu compacts has a strong impact on the thermal and electric properties. In this study, uncertainty was quantified to evaluate determination of carbon in a W-15%Cu MIM body by the combustition method. For a valid generalization about this evaluation, uncertainty scheme applied even to the repeatability as well as the uncertainty sources of each analyse step and quality appraisal sources. As a result, the concentration of carbon in the W-Cu part were measured as 0.062% with expanded uncertainty of 0.003% at 95% level. This evaluation example may be useful to uncertainty evaluation for other MIM products.

Statistical Uncertainty Analysis of Thermal Mass Method for Residual Propellant Estimation (잔여추진제 추정을 위한 열질량법의 통계적 불확실성 분석)

  • Park, Eungsik;Park, BongKyu;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1116-1123
    • /
    • 2015
  • The lifetime of a geostationary satellite depends on the residual propellant amount and therefore the precise residual propellant gauging is very important for the mitigation of economic loss arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. In this paper, the thermal mass method and its uncertainty are described. The residual propellant analysis of a geostationary satellite is simulated based on the KOREASAT data and the uncertainty of thermal mass method is calculated by using the Monte Carlo method. The results of this study show the importance parameter of estimation residual propellant using the thermal mass method.

Classifications of Life Distributions Based on Uncertainty Measures (불확실성 측도에 따른 수명분포의 분류)

  • Nam, Kyung-Hyun
    • Journal of Applied Reliability
    • /
    • v.3 no.1
    • /
    • pp.83-92
    • /
    • 2003
  • We studied the trend change of failure rate function and uncertainty of residual life function in terms of location of their trend change points. It is shown that the trend change of uncertainty of residual life takes place before the failure rate changes its trend. Like DIFR(IDFR) does not necessary implies IDMRL(DIMRL), we find the fact that DIFR(IDFR) does not always imply IDURL(DIURL) under certain conditions, through the exponentiated-weibull distribution.

  • PDF

On-the-fly Estimation Strategy for Uncertainty Propagation in Two-Step Monte Carlo Calculation for Residual Radiation Analysis

  • Han, Gi Young;Kim, Do Hyun;Shin, Chang Ho;Kim, Song Hyun;Seo, Bo Kyun;Sun, Gwang Min
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.765-772
    • /
    • 2016
  • In analyzing residual radiation, researchers generally use a two-step Monte Carlo (MC) simulation. The first step (MC1) simulates neutron transport, and the second step (MC2) transports the decay photons emitted from the activated materials. In this process, the stochastic uncertainty estimated by the MC2 appears only as a final result, but it is underestimated because the stochastic error generated in MC1 cannot be directly included in MC2. Hence, estimating the true stochastic uncertainty requires quantifying the propagation degree of the stochastic error in MC1. The brute force technique is a straightforward method to estimate the true uncertainty. However, it is a costly method to obtain reliable results. Another method, called the adjoint-based method, can reduce the computational time needed to evaluate the true uncertainty; however, there are limitations. To address those limitations, we propose a new strategy to estimate uncertainty propagation without any additional calculations in two-step MC simulations. To verify the proposed method, we applied it to activation benchmark problems and compared the results with those of previous methods. The results show that the proposed method increases the applicability and user-friendliness preserving accuracy in quantifying uncertainty propagation. We expect that the proposed strategy will contribute to efficient and accurate two-step MC calculations.

Fatigue Life Prediction of a Laser Peened Structure Considering Model Uncertainty (모델 불확실성을 고려한 레이저 피닝 구조물의 피로 수명 예측)

  • Im, Jong-Bin;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1107-1114
    • /
    • 2011
  • In this paper, the fatigue life of a laser peened structure was predicted. In order to calculate residual stress induced by laser peening finite element simulation was carried out. Modified Goodman equation was used to consider the effect of compressive residual stress induced by laser peening in fatigue analysis. In addition, additive adjustment factor approach was applied to consider S-N curve model uncertainty. Consequently, the reliable bounds of the predicted fatigue life of the laser peened structure was determined.

The Impacts of Requirement Uncertainty and Standardization on Software Project Performance : A Comparison of Korea and USA (요구사항 불확실성과 표준화가 소프트웨어 프로젝트 성과에 미치는 영향 : 한국과 미국의 비교연구)

  • 나관식
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.15-27
    • /
    • 2004
  • Most software projects inevitably involve various types and degrees of uncertainty. Without proper risk assessment and coordination, software projects can easily run out of control and consume significant additional resource. Thus, risk management techniques are critical issues to information system researchers. Previous empirical studies of U.S. software firms support the adoption of development standardization and user requirement analysis techniques in risk-based software project management. Using data collected from software projects developed in Korea during 1999-2000, we conduct a comparative study to determine how risk management strategies impact software product and process performance in countries with dissimilar IT capabilities. In addition, we offer an alternative conceptualization of residual performance risk. We show that the use of residual performance risk as an intervening variable is inappropriate in IT developing countries like Korea where the role of late stage risk control remedies are critical. A revised model is proposed that generates more reliable empirical implications for Korean software projects.

  • PDF

FUZZY SOLUTIONS OF ABEL DIFFERENTIAL EQUATIONS USING RESIDUAL POWER SERIES METHOD

  • N. NITHYADEVI;P. PRAKASH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.71-82
    • /
    • 2023
  • In this article, we find the approximate solutions of Abel differential equation (ADE) with uncertainty using residual power series (RPS) method. This method helps to calculate the sequence of solutions of ADE. Finally, numerical illustrations demonstrate the applicability of the method.

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.