• 제목/요약/키워드: Residual structural performance

검색결과 178건 처리시간 0.023초

Comparison of Structural Change Tests in Linear Regression Models

  • Kim, Jae-Hee
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1197-1211
    • /
    • 2011
  • The actual power performance of historical structural change tests are compared under various alternatives. The tests of interest are F, CUSUM, MOSUM, Moving Estimates and empirical distribution function tests with both recursive and ordinary least-squares residuals. Our comparison of the structural tests involves limiting distributions under the hypothesis, the ability to detect the alternative hypotheses under one or double structural change, and smooth change in parameters. Even though no version is uniformly superior to the other, the knowledge about the properties of those tests and connections between these tests can be used in practical structural change tests and in further research on other change tests.

Low-dose CT Image Denoising Using Classification Densely Connected Residual Network

  • Ming, Jun;Yi, Benshun;Zhang, Yungang;Li, Huixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2480-2496
    • /
    • 2020
  • Considering that high-dose X-ray radiation during CT scans may bring potential risks to patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. Due to complex statistical characteristics of noise found in low-dose CT images, many traditional methods are difficult to preserve structural details effectively while suppressing noise and artifacts. Inspired by the deep learning techniques, we propose a densely connected residual network (DCRN) for low-dose CT image noise cancelation, which combines the ideas of dense connection with residual learning. On one hand, dense connection maximizes information flow between layers in the network, which is beneficial to maintain structural details when denoising images. On the other hand, residual learning paired with batch normalization would allow for decreased training speed and better noise reduction performance in images. The experiments are performed on the 100 CT images selected from a public medical dataset-TCIA(The Cancer Imaging Archive). Compared with the other three competitive denoising algorithms, both subjective visual effect and objective evaluation indexes which include PSNR, RMSE, MAE and SSIM show that the proposed network can improve LDCT images quality more effectively while maintaining a low computational cost. In the objective evaluation indexes, the highest PSNR 33.67, RMSE 5.659, MAE 1.965 and SSIM 0.9434 are achieved by the proposed method. Especially for RMSE, compare with the best performing algorithm in the comparison algorithms, the proposed network increases it by 7 percentage points.

섬유금속 적층판의 구조적 성능 연구 (The study on structural performance of fiber metal laminates)

  • 김성준;김태욱;김승호
    • 항공우주기술
    • /
    • 제13권1호
    • /
    • pp.20-26
    • /
    • 2014
  • 본 논문에서는 충격하중과 잔류 에너지 등의 충격거동에 대한 영향을 확인하기 위하여 항복응력, 탄젠트 강성계수 및 파단 변형률을 변화시켰다. 그리고 섬유금속 적층판의 좌굴거동을 수치해석을 이용하여 수행하였다. 좌굴 성능을 비교하기 위하여 섬유금속 적층판과 알루미늄 판에 대해 인장 및 압축하중에 대한 여러 가지 경우의 해석을 수행하였다. 또한 정적 성능을 평가하기 위하여 박스 보 구조물의 정적해석을 수행하였다. 알루미늄 2024 박판과 유리섬유/에폭시 프리프레그로 만든 섬유금속 적층판에 대한 저속충격 해석을 수행하였다. 그리고 좌굴 및 정적해석 결과를 이용하여 섬유금속 적층판과 알루미늄의 성능을 비교하였다. 구조적 성능 비교를 위하여 동일한 무게의 알루미늄 2024 박판에 대한 해석을 수행하였다.

해석법 차이에 의한 프리스트레스트 콘크리트 보부재의 잔류변형률 비교 (Comparison of Residual Strain of Prestressed Concrete Beam Member by Different Analysis Method)

  • 이덕기
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.189-195
    • /
    • 2017
  • In the seismic design of building structural members, due to the complexity of the placement of PC steels in prestressed concrete members, it is necessary to review and define the definition of member damage in comparison with reinforced concrete members. In this study, the results of past experiments compared with the calculation results by 'section Analysis Method', with the aim of reviewing the precision of calculation results when member damage evaluation is performed using the section analysis method. Furthermore, it is also compared with the calculation results by the 'split Element Method'. In addition, parametric studies were carried out, and the influence of the difference between the amount of PC steels and reinforced bar on the residual strain was examined.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

Performance of fire damaged steel reinforced high strength concrete (SRHSC) columns

  • Choi, Eun Gyu;Kim, Hee Sun;Shin, Yeong Soo
    • Steel and Composite Structures
    • /
    • 제13권6호
    • /
    • pp.521-537
    • /
    • 2012
  • In this study, an experimental study is performed to understand the effect of spalling on the structural behavior of fire damaged steel reinforced high strength concrete (SRHSC) columns, and the test results of temperature distributions and the displacements at elevated temperature are analyzed. Toward this goal, three long columns are tested to investigate the effect of various test parameters on structural behavior during the fire, and twelve short columns are tested to investigate residual strength and stiffness after the fire. The test parameters are mixture ratios of polypropylene fiber (0 and 0.1 vol.%), magnitudes of applied loads (concentric loads and eccentric loads), and the time period of exposure to fire (0, 30, 60 and 90 minutes). The experimental results show that there is significant effect of loading on the structural behaviors of columns under fire. The loaded concrete columns result more explosive spalling than the unloaded columns under fire. In particular, eccentrically loaded columns are severely spalled. The temperature distributions of the concrete are not affected by the loading state if there is no spalling. However, the loading state affects the temperature distributions when there is spalling occurred. In addition, it is found that polypropylene fiber prevents spalling of both loaded and unloaded columns under fire. From these experimental findings, an equation of predicting residual load capacity of the fire damaged column is proposed.

Nonlinear damage detection using higher statistical moments of structural responses

  • Yu, Ling;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.221-237
    • /
    • 2015
  • An integrated method is proposed for structural nonlinear damage detection based on time series analysis and the higher statistical moments of structural responses in this study. It combines the time series analysis, the higher statistical moments of AR model residual errors and the fuzzy c-means (FCM) clustering techniques. A few comprehensive damage indexes are developed in the arithmetic and geometric mean of the higher statistical moments, and are classified by using the FCM clustering method to achieve nonlinear damage detection. A series of the measured response data, downloaded from the web site of the Los Alamos National Laboratory (LANL) USA, from a three-storey building structure considering the environmental variety as well as different nonlinear damage cases, are analyzed and used to assess the performance of the new nonlinear damage detection method. The effectiveness and robustness of the new proposed method are finally analyzed and concluded.

Detection and quantification of structural damage under ambient vibration environment

  • Yun, Gun Jin
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.425-448
    • /
    • 2012
  • In this paper, a new damage detection and quantification method has been presented to perform detection and quantification of structural damage under ambient vibration loadings. To extract modal properties of the structural system under ambient excitation, natural excitation technique (NExT) and eigensystem realization algorithm (ERA) are employed. Sensitivity matrices of the dynamic residual force vector have been derived and used in the parameter subset selection method to identify multiple damaged locations. In the sequel, the steady state genetic algorithm (SSGA) is used to determine quantified levels of the identified damage by minimizing errors in the modal flexibility matrix. In this study, performance of the proposed damage detection and quantification methodology is evaluated using a finite element model of a truss structure with considerations of possible experimental errors and noises. A series of numerical examples with five different damage scenarios including a challengingly small damage level demonstrates that the proposed methodology can efficaciously detect and quantify damage under noisy ambient vibrations.

Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.141-156
    • /
    • 2019
  • This paper presents the flexural behaviour of stainless steel beam-to-tubular column joints with extended endplates subjected to static loading. Moment-rotation relationships were investigated numerically by using Abaqus software with geometric and material nonlinearity considered. The prediction of damages among components was achieved through ductile damage models, and the influence of initial geometric imperfections and residual stresses was evaluated in large fabricated stainless steel joints involving hollow columns and concrete-filled columns. Parametric analysis was subsequently conducted to assess critical factors that could affect the flexural performance significantly in terms of the initial stiffness and moment resistance. A comparison between codes of practice and numerical results was thereafter made, and design recommendations were proposed for further applications. Results suggest that the finite element model can predict the structural behaviour reasonably well with the component damage consistent with test outcomes. Initial geometric imperfections and residual stresses are shown to have little effect on the moment-rotation responses. A series of parameters that can influence the joint behaviour remarkably include the strain-hardening exponents, stainless steel strength, diameter of bolts, thickness of endplates, position of bolts, section of beams and columns. AS/NZS 2327 is more reliable to predict the joint performance regarding the initial stiffness and moment capacity compared to EN 1993-1-8.

방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구 (Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance)

  • 김기현;김민규;김민제;신명
    • 한국전산구조공학회논문집
    • /
    • 제36권5호
    • /
    • pp.331-338
    • /
    • 2023
  • 현대의 방탄 장갑은 우수한 관통 저항성을 갖추어야할 뿐만 아니라 군인과 군용차량의 기동성이 확보되어야 하기 때문에 경량화가 중요한 개발 요소가 되었다. 이종 적층 평판 구조의 방탄 장갑의 방탄 성능은 동일 중량 대비 구성 재료의 배열에 따라 달라진다. 본 논문에서는 케블라, 초고분자량 폴리에틸렌 그리고 에바 폼으로 구성된 방탄 장갑의 적층 배열에 따른 방탄 성능을 분석한다. 구성 재료의 두께가 5mm와 6.5mm인 두 가지 경우에서 6가지 적층 배열에 대하여 7.62 × 51mm NATO 탄환의 M80 탄을 856m/s의 속도로 충돌시키는 피탄 해석을 수행하였다. 방탄 성능을 평가하기 위해 이종 적층 평판을 관통한 발사체의 잔류 속도와 잔류 에너지를 측정하였다. 시뮬레이션 결과를 통해 케블라, 초고분자량 폴리에틸렌, 에바 폼의 배열 순서를 갖는 적층 구조가 동일 중량에 대해 가장 우수한 방탄 성능을 가짐을 확인하였다.