• Title/Summary/Keyword: Residual stress improvement

Search Result 150, Processing Time 0.025 seconds

Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods (기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

The Stress Distribution and Improvement of fatigue Strength for Notched Materials by Shot Peening (Shot peening 가공에 의한 노치재의 응력분포와 피로강도의 개선)

  • Lee, Seung-Ho;Kim, Hei-Song
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.120-126
    • /
    • 1998
  • Second step shot peening was applied on both smooth specimen and U-notch specimen in order to investigate the stress distribution and the improvement in fatigue strength. Various experiments and measurements such as rotary bending fatigue test and the measurement of compressive residual stress were performed. The results showed that the fatigue strength of second step shot peened specimens increased by 34 percent compared to that of unpeened ones. Compressive residual stress also considerably increased, which resulted in the increase of fatigue strength. finite element analysis showed that shot peening is effective in decreasing the bending stress by external force. The effectiveness of shot peening in reducing the compressive residual stress was anticipated by the superposition of the concentrated stress and the compressive residual stress.

  • PDF

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 이천수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.121-124
    • /
    • 1998
  • It is well known that during the oxygen cutting residual thermal stresses are produced in weldment. Surface compressive residual stress is one of reasons for improvement on fatigue durability. To reduce the residual stress and improve the fatigue strength applied the impact loading in oxygen cutting frame. After applying the impact loading, redistribution of residual stress was measured by cutting method and tested fatigue tests.

  • PDF

The Evaluation and Relaxation of Residual Stress of Steel Cord (Steel Cord 선재의 판류응력 평가 및 완화에 관한 연구)

  • Lee, S.K.;Hwang, W.H.;Kim, B.M.;Bae, C.M.;Lee, C.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.191-194
    • /
    • 2006
  • Recently the quality improvement of the steel cord product is demanded by the tire market. After wire drawing process, produced residual stresses have a harmful effect on the durability of the wire and become the cause which decreases the quality of the product. Therefore, to improve the quality of the steel cord product, the research regarding the method of residual stress relaxation is necessary. To evaluate the quality of the drawn wire, it is important to measure the residual stress, because the residual stress decides a variety of the quality level which is demanded in the drawn wire. This study proposed a residual stress relaxation method in the drawn wire using FE analysis. The validity of the analysis results was verified by nanoindentation test.

  • PDF

A Study of Development Methods of Fatigue Life Improvement for the Suspension Material (현가장치재의 피로수명향상 공법개발에 관한 연구)

  • 박경동;정찬기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel (스프링강의 피로파괴에 미치는 압축잔류응력의 영향)

  • Jin, Young-Beom;Park, Keyung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.603-608
    • /
    • 2001
  • Recently, cold expansion of fastener holes is commonly used in the aerospace industry to increase the fatigue endurance of airframes. Cold expansion process is used as the retardation of crack initiation in the hole. This treatment leads to an improvement of fatigue behavior due to the compressive residual stresses developed on the hole surface. The residual stress profile depends on the cold expansion ratio. In the present paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen. It is further shown that residual stress increases in proportion to cold expansion ratio. It is thought that crack growth rate increases as cold expansion ratio.

  • PDF

Finite Element Analysis of Residual Stress by Cold Expansion Method with Clamping Force in the Plate having Adjacent Holes (인접홀에서 홀확장법과 체결력 고려시, 발생하는 잔류응력 분포에 대한 유한요소해석)

  • Yang Won-Ho;Cho Myoung-Rae;Jang Jae-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.149-154
    • /
    • 2006
  • The cold expansion method (CEM) is one of the widely used a method to improve the fatigue behavior of materials in aerospace industry. Such improvement is due to the compressive residual stress developed when a tapered mandrel goes through the fastener holes a little smaller than the mandrel. CEM is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Many researchers are studied a finite element analysis of residual stress around fastener hole. But in case of real model, fastener hole has a clamping force after CE. Therefore, it is respected that residual stress distributions should be changed due to clamping forces. In this paper, it was performed finite element analysis of residual stress by clamping force after CE in the plate having adjacent holes. From this study, it has been found that compressive residual stress near the hole increases according to clamping force. Also, the more increase clamping force, the more increases compressive residual stress. However, tensile residual stress increase beyond clamping force area.

A Study on the Method of Residual Stress Relaxation during Wire Drawing and Evaluation of Residual Stress Using Nano Indentation Test (신선 시 선재의 잔류응력 완화 방법에 관한 연구 및 나노 압입 시험을 이용한 잔류응력 평가)

  • Ko Dae-Cheol;Hwang Won-Ho;Lee Sang-Kon;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.162-169
    • /
    • 2006
  • Steel cord which is used as reinforcement in car tires is produced by wet-drawing process. Recently the quality improvement of the steel cord product is demanded by the tire market. After cold drawing process, produced residual stresses have a harmful effect on the durability of the wire and become the cause which decreases the quality of the product. Therefore, to improve the quality of the steel cord product, the research regarding the method of residual stress relaxation is necessary. To evaluate the quality of the cold drawn wire, it is very important to measure the residual stress, because the residual stress decides a variety of the quality level which is demanded in the cold drawn wire. The aim of this study is to propose residual stress relaxation method in the drawn wire using FE-analysis. The validity of the analysis results was verified by Nano indentation test.

A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application (선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향)

  • Ryu Hyung-Ju;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.