• 제목/요약/키워드: Residual stiffness

검색결과 198건 처리시간 0.025초

화재 시 하중 재하 조건에 따른 중공슬래브의 내화거동 및 잔존성능 (Fire Resistance Behavior and Residual Capacity of Voided Slab Subjected to Fire According to Loading Condition)

  • 최현기;배백일;정형석;최창식;정주홍
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.99-106
    • /
    • 2018
  • 본 연구는 하중 조건에 따른 화해를 입은 중공슬래브의 잔류성능에 대한 실험적 연구이다. 이를 평가하기 위하여, 하중조건을 변수로 하는 2개의 중공슬래브 실험체를 제작하여 ISO 834 표준화재 곡선에 따라 120분간 가열하였으며, 이를 상온으로 냉각하여 잔류 휨 성능을 평가하였다. 실험결과 하중조건에 따라 중공슬래브의 온도분포가 상이한 것으로 나타났으며, 재하 실험체가 비재하 실험체에 비해 전단면에 걸쳐 온도가 빠르게 상승하는 경향을 보임을 확인하였다. 고온으로 가열 후 냉각한 중공슬래브의 잔류 휨 강도의 경우 화해를 입지 않은 중공슬래브에 비해 34%~40% 감소하는 것으로 나타났으며, 휨 강성의 경우 15%~23% 감소하는 것으로 나타났다. 하중을 재하 한 중공슬래브의 경우 재하하지 않고 가열한 중공슬래브에 비해 약 10%의 강도 저감이 발생하였으며, 휨 강성의 경우 15% 감소한 것으로 나타났다. 이러한 결과는 하중 재하에 따른 휨 균열에 의해 슬래브의 하부 주인장 철근의 온도가 비재하 실험체에 비해 높아지며, 하부철근 피복의 박리현상이 가속화되기 때문인 것으로 판단된다.

굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출 (A study on excavator front support parts to minimize springback defects)

  • 전용준;허영무;이하성;김동언
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정 (Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials)

  • 유승종;김주현;박주승;권동일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF

연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가 (The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique)

  • 유승종;김주현
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

모델기반의 계측데이터 확장 및 손상 추정에 관한 연구 (A Model-based Study on the Expansion of Measured Data and the Damage Detection)

  • 강택선;이병헌;은희창
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.3-10
    • /
    • 2018
  • It's not practical to collect all information at the entire degrees of freedom of finite element model. The incomplete measurements should be expanded for subsequent analysis and damage detection. This work presents the analytical methods to expand the incomplete static or dynamic response data. Using the expanded data, introducing the concept of residual force, and minimizing the performance index expressed as the stiffness matrix and its difference before and after damage, the variation in stiffness matrix is derived. Based on the difference in the stiffness matrix, the damage detection method of structures is also provided. The validity of the proposed methods is illustrated in a numerical application, the numerical results are analyzed for applications, and the applicability of both methods is investigated.

직사각형 MEMS 판 구조의 리츠 해석 (I);수식화 및 수치해법 (Ritz Analysis of Rectangular MEMS Structures (I);Formulation and Its Implementation)

  • 김은석;이병채
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.421-430
    • /
    • 2000
  • We apply the Rayleigh Ritz method to analyze multi-layered plates with residual stresses. The method is very simple, straight forward, and easily programmable, but it should be applied to structure s only in simple shapes. We derive coupled variational equations based on the principle of virtual displacement, and investigate what kind of basis functions is desirable for the analysis of rectangular plates with various boundary conditions. We demonstrate the effectiveness and usefulness of the method through several examples. The analysis results obtained with the method are in good agreement with those available in literature. A multi-layered MEMS plate example shows that the coupling effect should not be ignored and that residual stresses do influence the stiffness of the structure very much.

지속하중 재하시 보강토 옹벽의 거동특성 - 축소모형실험 (Behavior of Geosynthetic Reinforced Modular Block Walls under Sustained Loading)

  • 유충식;김선빈;변요셉;김영훈;한대희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.121-130
    • /
    • 2006
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when used as part of permanent structures. In view of these concerns, time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained loads were investigated using reduced-scale model tests. The results indicated that a sustained load can yield appreciable magnitude of residual deformation, and that the magnitude of residual deformation depends on the loading characteristic as well as reinforcement stiffness.

  • PDF

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • 제8권6호
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.