• Title/Summary/Keyword: Residual stiffness

Search Result 198, Processing Time 0.025 seconds

Recentering X-Braced Steel Frames Using Superelastic Shape Memory Alloy (초탄성 형상기억합금을 이용한 원상 복원 X형 철골 가새 골조)

  • Lee, Sung Ju;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.109-119
    • /
    • 2018
  • In this paper a systematic numerical analysis is performed to obtain the energy dissipation and re-centering capacities of diagonal steel braced frames subjected to cyclic loading. This diagonal steel bracing systems are fabricated with super-elastic SMA (Shape Memory Alloy) braces in order to develop a recentering seismic resistance system without residual deformation. The three-dimensional nonlinear finite element models are constructed to investigate the horizontal stiffness, drifts and failure modes of the re-centering bracing systems.

Theoretical analysis of self-centering concrete piers with external dissipators

  • Cao, Zhiliang;Guo, Tong;Xu, Zhenkuan;Lu, Shuo
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1313-1336
    • /
    • 2015
  • The self-centering prestressed concrete (SCPC) bridge pier with external dissipators is a novel structure, aiming at reducing residual deformation and facilitating the post-earthquake repair. This paper presents the configuration and mechanical behaviors of the pier. A theoretical model for the lateral force-displacement relationship under cyclic loading is developed. The proposed model comprises an iterative procedure which describes the deformation of dissipators under different conditions. Equations of pier stiffness after gap opening, as well as the equivalent viscous damping ratio, etc., are derived based on the proposed model. Existing cyclic load test results were used to validate the proposed model, and good agreement is observed between the analytical and test results.

Experimental Study on the Mechanical Behavior of Reinforced Concrete Beams Exposed to High Temperature (고온에 노출된 철근콘크리트 보의 역학적 특성에 관한 실험연구)

  • Choi, Kwang-Ho;Lee, Joong-Won;Eum, Young-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.127-130
    • /
    • 2005
  • The purpose of this study is to investigate the flexural behavior of reinforced concrete beam members exposed to high temperature. In order to study the flexural behaviors, the 17 specimens have been tested with variables of reinforcement ratios($0.5\rho_{max},\rho_{min}$), heating conditions(nonheating, 400$^{circ}C$, 600$^{circ}C$, 800$^{circ}C$ heating and 1 hour preservation) and loading state(stressed and residual state). The results show that the stiffness and strength of specimens are lower when they are exposed to higher temperature and the pattern of crack and color of specimens exposed to fire are different from ordinary concrete members.

  • PDF

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.

Injection Moulding of Polyetherimide Axi-Symmetric Elements (PEI계 플라스틱 축대칭 부품의 사출 성형에 관한 연구)

  • 하영욱;정태형;이범재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.68-74
    • /
    • 2002
  • This research covers the development of axi-symmetric plastic elements for injection molding with insert steel such as high stiffness Sabot. The functional requirements of sabot are concentricity and fracture resistance about vertical and horizontal forces. For these, an analysis of characteristics of PEI(polyetherimide) polymer is performed by standard test specimen with accordance of ASTM test guidance. Moldflow analysis and simulation of injection molding process are carried out in order not only to estimate of the warpage but also to predict the characteristics of residual stresses which both product and structure of mold may have. A new vertical side injection machine and transverse mold have been constructed. Results of the measuring concentricity and fracture test after molding of sabot are satisfied to design specification over Cp $ratio{\geq}1.33$. Finally, this technique needs more research application to others axi-symmetric elements having different radius with insert steel md structure analysis from now on.

Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates

  • Dhakal, Rajesh P.;Pan, Tso-Chien
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.129-145
    • /
    • 2006
  • This paper provides an insight into the response of non-seismic reinforced concrete (RC) building frames to excitations of different frequencies through experimental investigation. The results of cyclic loading tests of six full-scale RC beam-column sub-assemblies are presented. The tested specimens did not have any transverse reinforcement inside the joint core, and they were subjected to quasi-static and dynamic loading with frequencies as high as 20 Hz. Some important differences between the cyclic responses of non-seismic and ductile RC frames are highlighted. The effect of excitation frequency on the behavior of non-seismic joints is also discussed. In the quasi-static tests, shear deformation of the joint panel accounted for more than 50% of the applied story drift. The test results also showed that higher-frequency excitations are less detrimental than quasi-static cyclic loads, and non-seismic frames can withstand a higher load and a larger deformation when they are applied faster.

Bolted joints for single-layer structures: numerical analysis of the bending behaviour

  • Lopez-Arancibia, A.;Altuna-Zugasti, A.M.;Aldasoro, H. Aizpurua;Pradera-Mallabiabarrena, A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.355-367
    • /
    • 2015
  • This paper deals with a new designed joint system for single-layer spatial structures. As the stability of these structures is greatly influenced by the joint behaviour, the aim of this paper is the characterization of the joint response in bending through Finite Element Method (FEM) analysis using ABAQUS. The behaviour of the joints studied here was influenced by many geometrical factors, such as bolts and plate sizes, distance between bolts and end-plate thickness. The study comprised five models of joints with different values of those parameters. The numerical results were compared to the results of previous experimental tests and the agreement was good enough. The differences between the numerical and experimental initial stiffness are attributed to the simplifications introduced when modelling the bolt threads as well as the presence of residual stresses in the test specimens.

The Behavior of Fire Damaged High Strength SRC Columns with Polypropylene Fiber (PP섬유 혼입 고강도 SRC 기둥의 화재 후 거동)

  • Choi, Eun-Gyu;Jung, Hye-Won;Shin, Yeong-Soo;Lee, Cha-Don;Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.33-36
    • /
    • 2006
  • The purpose of this paper is to investigate the structural behavior of fire damaged high-strength SRC columns with polypropylene fiber. When high-strength concrete is exposed to high temperature, spalling is occurred then it leads to decrease the capacity of members. Polypropylene fiber is used to reduce the spalling of the specimens and the distinction in the behavior after fire is observed. High-strength concrete specimens were exposed to high temperatures by the ISO 834 curve. Main experimental parameters were the ratio of the contained polypropylene fiver, heating time and type of loading. Reduction rate in residual strength and stiffness is observed for the mixing of PP fiber, the heating time and eccentricity of loading.

  • PDF

Development of AI Matrix Composite using Shape Memory Alloy (형상 기억 합금을 이용한 Al기 복합재료 개발)

  • Jeong, T.H.;Lee, D.J.;Kim, H.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.53-62
    • /
    • 1998
  • A simple analytical and finite element(FE) models are used to study the tensile properties of Al matrix composite with continuous TiNi fibers. The effects of residual stresses caused by the shape momory effects have been compared for various mechanical behaviors as a function of fiber volume fraction and degree of pre-strain and fiber configurations. It is found that both the back stress in the Al matrix induced by stiffness of TiNi fibers and the compressive stress in the matrix are caused of the strengthening mechanisms. Both theoretical and analytical results show quite good agreement and are closed to the experimental data except in high volume content.

  • PDF

Design of Gate Locations, Molding Conditions, and Part Structure to Reduce the Warpage of Short-Fiber Reinforced Injection Molded Part (단섬유 보강 사출성형품의 휨 감소를 위한 게이트 위치, 성형 조건 및 제품 구조 설계)

  • Choi, D.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2008
  • Fiber reinforced injection molded parts are widely used in recent years because of their improved properties of materials such as specific stiffness, specific strength, and specific toughness. The demand for products with high precision is increasing and it is important to minimize the warpage of the products. The warpage of short-fiber reinforced product is caused by anisotropy induced by fiber orientation as well as the residual stresses induced during the molding process. In order to reduce the warpage of the part, it is important to achieve successful mold design, processing control, and part design. In the present study, the design of gating system, molding condition, and part structure were carried out and verified with numerical analysis using a commercial CAE code Moldflow. The numbers and locations of gates were iteratively determined, and the molding conditions which can decrease the warpage of the part were investigated. Finally, slight structural modification of the part was conducted to reduce the locally concentrated warpage.