• Title/Summary/Keyword: Residual space

Search Result 303, Processing Time 0.028 seconds

Range Design of Pulse Repetition Frequency for Removal of SAR Residual Image (영상레이더 잔상 제거를 위한 펄스 반복 주파수의 범위 설계)

  • Kim, Kyeong-Rok;Heo, Min-Wook;Kim, Tu-Hwan;Ryu, Sang-Burm;Lee, Sang-Gyu;Lee, Hyeon-Cheol;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1653-1660
    • /
    • 2016
  • The synthetic aperture rardar (SAR) is an active sensor using microwaves. It transmits a microwave signal, called a chirp pulse, and receives the reflected signal in a moving platform such as satellite and unmanned aerial vehicle. Since this sensor uses microwaves that can penetrate the atmosphere, SAR generates the images regardless of light and weather conditions. However SAR operates on the moving platform, the Doppler shift and the side-looking observation method should be considered. In addtion, a residual image or ghost image can be occurred according to selection of the pulse repetition frequency (PRF). In this paper, a range design of the PRF for the L-band spaceborne SAR system is studied for prevention of SAR image distortion. And the system is studied for prevention of SAR image distortion. And the system parameter and the PRF are calibrated iteratively according to the proposed system design procedure and design constraints. The MATLAB based on SAR system simulator has been developed to verify the validity of calculated PRF. The developed simulator assumes that SAR sensor is operated by the PRF calculated from the design. The results of the simulator show that the targets in image has a valid peak to side-lobe ratio (PSLR) so that the PRF can be used for the spaceborne SAR sensor.

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.

Ultimate Strength Analysis of Space Steel Frames Considering Spread of Plasticity (점진적 소성화를 고려한 공간 강뼈대구조의 극한강도해석)

  • Kim, Sung Bo;Han, Jae Young;Park, Soon Cheol;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.299-311
    • /
    • 2003
  • This paper presents a finite element procedure to estimate the ultimate strength of space frames considering spread of plasticity. The improved displacement field is introduced based on the inclusion of second-order terms of finite rotations. All the non-linear terms due to bending moment, torsional moment, and axial force are precisely considered. The concept of plastic hinges is introduced and the incremental load/displacement method is applied for elasto-plastic analyses. The initial yield surface is defined based on the residual stress, and the full plastification surface is considered under the combined action of axial forces, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for the ultimate strength of space frames are compared with available solutions and experimental results.

Effect of aging on the sorption and desorption behaviors of Pb and Cd in the coastal sediment (노화(aging)가 연안 퇴적물 내 납과 카드뮴의 흡/탈착 거동에 미치는 영향)

  • Gwak Mun-Yong;Sin Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.247-252
    • /
    • 2006
  • 오염 퇴적물내 중금속의 방출과 이에 따른 생이용성(bioavalability)은 기존의 가역 평형관계로써 설명하기에 불충분한 것으로 알려져 있다. 최근 연구결과에 의하면 이러한 탈착 저항성을 설명하기 위한 비가역적 모델에 의해 퇴적물내 중금속의 탈착저항성 부분이 존재함이 밝혀졌다. 탈착저항성에 대해서는 아직 충분한 규명이 이루어지지 않았으나, 오염물질의 노화(aging)에 의해 일단 탈착저항성을 띠게 되면 생이용성(bioavailability)이 감소되는 것으로 알려져 있다. 본 연구에서는 노화(aging)가 연안 퇴적물 내 납과 카드뮴의 흡/탈착 특성에 미치는 영향을 알아보기 위해 연속 탈착실험과 biphasic 탈착모델을 적용함으로써 납과 카드뮴의 탈착저항성을 규명하고자 하였다. 그리고 연속 추출 실험을 통해서 노화(aging)에 따른 퇴적물 내 납과 카드뮴의 흡착 기작을 규명하고자 하였다. 연속탈착 실험 결과 시간이 경과함에 따라 탈착저항성부분의 크기가 증가하였으며, 연속추출 실험 결과 납의 경우 carbonate fraction에서 추출된 납이 가장 많았으며, 노화(aging) 따라 exchangeable fraction에서 추출된 납이 감소하는 반면 reducible, organic material, residual fraction에서 추출된 납의 양이 증가하였다. 카드뮴의 경우 가장 많은 양이 추출된 단계는 exchangeable fraction이였으며, organic material fraction에서는 카드뮴이 추출되지 않았다. 노화(aging) 따라 reducible fraction과 residual fraction에서의 추출량이 증가하는 경향을 보였으나 그 양은 매우 적은 것으로 나타났으며, 노화(aging)에 따른 exchangeable fraction과 carbonate fraction에서의 추출량은 큰 변화가 없었다. 대해서는 북한지역의 분포상황을 밝혔다.것을 알 수 있었으며, 크롬과 비소의 경우는 초기에 많이 용출되고, 구리의 경우는 꾸준히 용출되는 것을 알 수 있었다. 3년 된 통나무집이 8년 된 통나무집보다. 용출양이 더 컸으며, 이는 CCA성분이 초기에 많이 용출된다는 것을 의미한다. 억제 효과를 나타내었고 Hep3B에서는 부탄을 분획물 (1 mg/mL)에서 82%의 비교적 높은 성장억제효과를 나타내었다.as a "front" and "back". Thus, Germany′s private space may face a genuine public space and street, which is rare in the Korean housing. Although the layout of indoor space in the korean housing tends to be open, such an openness may be outstanding in living and dining spaces, kitchen and various accesses to rooms. In the case of Germany, such indoor spaces are usually closed to each other. Thus corridors act to separate these spaces. Such differences are analysed to be due to the different perceptions of interpersonal and socio-cultural attributes as intra-family and inter-neighbor relationships or communications. 알 수 있었다.도 질소와 인산처럼 토양지지대가 있는 경우가 낮은 함량을 유지하였다.pe from the daily life, to fantasize and daydre

  • PDF

A Compressed Sensing-Based Signal Detection Technique for Generalized Space Shift Keying Systems (일반화된 공간천이변조 시스템에서 압축센싱기술을 이용한 수신신호 복호 알고리즘)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1557-1564
    • /
    • 2014
  • In this paper, we propose a signal detection technique based on the parallel orthogonal matching pursuit (POMP) is proposed for generalized shift space keying (GSSK) systems, which is a modified version of the orthogonal matching pursuit (OMP) that is widely used as a greedy algorithm for sparse signal recovery. The signal recovery problem in the GSSK systems is similar to that in the compressed sensing (CS). In the proposed POMP technique, multiple indexes which have the maximum correlation between the received signal and the channel matrix are selected at the first iteration, while a single index is selected in the OMP algorithm. Finally, the index yielding the minimum residual between the received signal and the M recovered signals is selected as an estimate of the original transmitted signal. POMP with Quantization (POMP-Q) is also proposed, which combines the POMP technique with the signal quantization at each iteration. The proposed POMP technique induces the computational complexity M times, compared with the OMP, but the performance of the signal recovery significantly outperform the conventional OMP algorithm.

Validation of GPS Based Precise Orbits Using SLR Observations (레이저 거리측정(SLR) 데이터를 사용한 GPS 기반 정밀궤도결정 시스템 결과의 검증)

  • Kim, Young-Rok;Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong;Hwang, Yoo-La;Kim, Hae-Yeon;Lee, Byoung-Sun;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • In this study, the YLPODS (Yonsei Laser-ranging Precision Orbit Determination System) is developed for POD using SLR (Satellite Laser Ranging) NP (Normal Point) observations. The performance of YLPODS is tested using SLR NP observations of TOPEX/POSEIDON and CHAMP satellite. JPL's POE (Precision Orbit Ephemeris) is assumed to be true orbit, the measurement residual RMS (Root Mean Square) and the orbit accuracy (radial, along-track, cross-track) are investigated. The validation of POD using GPS (Global Positioning System) raw data is achieved by YLPODS performance and highly accurate SLR NP observations. YGPODS (Yonsei GPS-based Precision Orbit Determination System) is used for generating GPS based precise orbits for TOPEX/POSEIDON. The initial orbit for YLPODS is derived from the YGPODS results. To validate the YGPODS results the range residual of the first adjustment of YLPODS is investigated. The YLPODS results using SLR NP observations of TOPEX/POSEIDON and CHAMP satellite show that the range residual is less than 10 cm and the orbit accuracy is about 1 m level. The validation results of the YGPODS orbits using SLR NP observations of the TOPEX/POSEIDON satellite show that the range residual is less than 10 cm. This result predicts that the accuracy of this GPS based orbits is about 1m level and it is compared with JPL's POE. Thus this result presents that the YLPODS can be used for POD validation using SLR NP observations such as STSAT-2 and KOMPSAT-5.

Precise Orbit Determination Based on the Unscented Transform for Optical Observations

  • Hwang, Hyewon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.249-264
    • /
    • 2019
  • In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.

PERFORMANCE OF THE AUTOREGRESSIVE METHOD IN LONG-TERM PREDICTION OF SUNSPOT NUMBER

  • Chae, Jongchul;Kim, Yeon Han
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.2
    • /
    • pp.21-27
    • /
    • 2017
  • The autoregressive method provides a univariate procedure to predict the future sunspot number (SSN) based on past record. The strength of this method lies in the possibility that from past data it yields the SSN in the future as a function of time. On the other hand, its major limitation comes from the intrinsic complexity of solar magnetic activity that may deviate from the linear stationary process assumption that is the basis of the autoregressive model. By analyzing the residual errors produced by the method, we have obtained the following conclusions: (1) the optimal duration of the past time for the forecast is found to be 8.5 years; (2) the standard error increases with prediction horizon and the errors are mostly systematic ones resulting from the incompleteness of the autoregressive model; (3) there is a tendency that the predicted value is underestimated in the activity rising phase, while it is overestimated in the declining phase; (5) the model prediction of a new Solar Cycle is fairly good when it is similar to the previous one, but is bad when the new cycle is much different from the previous one; (6) a reasonably good prediction of a new cycle can be made using the AR model 1.5 years after the start of the cycle. In addition, we predict the next cycle (Solar Cycle 25) will reach the peak in 2024 at the activity level similar to the current cycle.