• Title/Summary/Keyword: Residual metals

Search Result 288, Processing Time 0.029 seconds

Quality Evaluation of Fresh-Cut Products in the Market (시중 판매중인 Fresh-Cut 채소 제품의 품질평가)

  • Cho, Sun-Duk;Park, Joo-Youn;Kim, Eun-Jeong;Kim, Dong-Man;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.5
    • /
    • pp.622-628
    • /
    • 2007
  • Most fresh-cut agri-food products are less stable than unprocessed materials from which they are made. The objective of this study was the development of a quality control system for fresh-cut agri-food products. In this study, vitamin C, minerals, residual heavy metals, and pesticides of various fresh-cut agri-food products were analysed. Sensory evaluation revealed that overall acceptability scores were less than expected in most products since fresh-cut products are likely to cause browning and easily lose their freshness. Therefore, the postharvest technologies that can maintain the quality, freshness and appearance must be supplied. Although vitamin C and minerals are main nutrients that can be supplied from salads, the results showed that vitamin C and mineral contents were very small and extremely small compared with the values from the food composition tables. It is possible that vitamin C and most minerals that are easily destroyed were lost through minimal processes like peeling and cutting. In safety side, the remaining heavy metal contents of fresh-cut agri-food were investigated and the results showed that copper and lead existed in some products because only cadmium in agricultural produce is controlled by the minimum standard of heavy metal contents in Korea. No residual pesticides were detected in all products.

Dispersion of Toxic Elements in the Area Covered with Uranium-Bearing Black Shales in Korea (함(含)우라늄 흑색(黑色)세일 분포지역(分布地域)에서의 유독성원소(有毒性元素)들의 분산(分散)에 관한 지구화학적(地球化學的) 연구(硏究))

  • Chon, Hyo-Taek;Jung, Myung-Chae
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.245-260
    • /
    • 1991
  • Surficial dispersion patterns of heavy metals and toxic elements (U, Mo, Cu, Zn, Fe, Mn, Co, Cr, V, Ni, Pb, and Cd) were investigated in the Dukpyungri, Goesan area covered with low grade uranium-bearing black shales. Maximum abundance of U in the black shale was 455ppm. Radioactivity was counted at a maximum of 7cps in black shales, and was less than 0.5cps in shales, slates, and oil shales of the control areas. Enrichment of Mo, V, Cu, Zn, Cd, and Pb in black shales is particularly characteristic compared with shales, slates, and oil shales of the control areas, whereas contents of Mn, Cr, Co, and Th in all rock samples tend to be almost similar. Residual top soils (0~15cm depth) over black shales show high contents of Mo, Cu, Zn, Ni, Cd, and V in comparison with the control areas. Contents of trace elements in subsoils (15~30cm depth) were higher about one and half times than those in topsoils. Average contents of Mo, Cu, Pb, Zn, Cd and V in garden soil and playground soil of an elementary school in Dukpyungri, Goesan area, were high about two to fifteen times compared with the control areas. Contents of trace elements in stream sediments were higher from two to eight times than those in residual soils. Sodium, AI, K, V, Cr, and Fe were more enriched in the roots of pine than in the twigs of pine. Contents of Li, AI, V, Ni, Cd, Fe, and Co were higher in the roots of azalea than in the twigs of azalea. Enrichment of P, Ca, and Mg was remarkable in the twigs of both pine and azalea. Biological absorption coefficients for essential elements (Zn, P, Mn, Ca and K)tend to be high, whereas those for the non-essential elements.(Ba, Ti, V, and Mo) and toxic elements(Cr, Co, Pb and Ni) be low. Less mobile elements (Pd, Cd, and Co) tend to show anomalies with higher contrast than more mobile elements(Mo, V, Zn, Cu and Ni) in the area covered with black shales.

  • PDF

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

Concentration of Hazardous Substances of Before/after a Decoction- In Prescription of High Frequency - (전탕 전과 후의 한약재 및 처방에 포함된 위해물질의 농도변화 -다빈도 한약 처방을 중심으로-)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyoung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Shin, Hyun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • Objectives: To compare the contents of hazardous substances before/after a decoction. Methods : The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 6 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide (S02) were performed by Monier-Williams distillation method. Results : 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Socheongryong-tang (before decoction - Pb; 1.115, Cd; 0.179, As; 0.069 and Hg; 0.028, after decoction - Pb; 0.110, Cd; 0.011, As; 0.005 and Hg; 0.002), Insampaedok-san (before decoction - Pb; 1.207, Cd; 0.148, As; 0.171 and Hg; 0.026, after decoction - Pb; 0.075, Cd; 0.006, As; not detected and Hg; O.OOD, Oryung-san (before decoction - Pb; 1.955, Cd; 0.430, As; 0.063 and Hg; 0.027, after decoction - Pb; 0.083, Cd; 0.013, As; 0.006 and Hg; 0.002), Hwangryunhaedok-tang (before decoction - Pb; 1.825, Cd; 0.210, As; 0.050 and Hg; 0.009, after decoction - Pb; 0.107, Cd; 0.010, As; 0.005 and Hg; O.OOD, Bangpungtongseong-san (before decoction - Pb; 1.740, Cd; 0.162, As; 0.585 and Hg; 0.018, after decoction - Pb; 0.041, Cd; 0.006, As; 0.022 and Hg; not detected) and Oyaksungi-san (before decoction - Pb; 1.199, Cd; 0.183, As; 0.321 and Hg; 0.031, after decoction - Pb; 0.096, Cd; 0.008, As; 0.021 and Hg; 0.0004). 2. Contents (mg/kg) of sulfur dioxide (S0$_2$) before a decoction in Socheongryong-tang, Insampaedok-san, Oryung-san, Hwangryunhaedok-tang, Bangpungtongseong-san and Oyaksungi-san exhibited 3.2, 5.7, 4.5, 49.8, 7.8 and 22.4, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. 3. Contents (mg/kg) of residual pesticides before/after a decoction in all samples were not detected. Conclusions : These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

Safe Decomposition of the Vehicle Waste Battery Module and Development of Separation Process of Cathode Active Material from Aluminum Thin Film (자동차용 폐 리튬 이차전지 모듈의 안정적 해체와 알루미늄 박막으로부터 양극활물질의 분리공정 개발)

  • Kim, Younjung;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.440-445
    • /
    • 2019
  • It has developed a method that can recover efficiently the reproducible resources from the vehicle waste lithium second battery module. Module cell consists of copper thin film, aluminum thin film and diaphragm made with polymer between these thin films. Cell was disassembled completely without any damage in glove box and through several steps. Preferentially, cathode active material was separated from aluminum thin film at heat treatment of 400 ℃. The retrieved cathode active material was then obtained as high purity after calcining at 800 ℃ to remove residual carbon. Based on this study, it was found that rare metals such as Co, Ni, Mn and Li made up of cathode active material could recover above 80% from aluminum thin film.

Fractionation and the Removal of Arsenic-Contaminated Soils Around Dalchĕn Mine Using Soil Washing Process (달천광산 주변 토양 내 비소의 존재형태 및 토양세척법에 의한 제거)

  • Han, Kyung-Wook;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.185-193
    • /
    • 2008
  • This study has been carried out to examine the feasibility of soil washing process for reducing arsenic contamination level of soil around $Dalch\hat{e}n$ Mine. The results of physicochemical tests of the target soil showed that pH was weak alkalic ($pH{\simeq}7.8$), soil texture was coarse sand, and organic contents (5.7%) and CEC (Cation exchange capacity; 21.5 meq/100 g) were similar with those of soils generally found in Korea. Contamination levels of arsenic were found to over 201 mg/kg which exceed the Korea standard levels of countermeasure and concern. To investigate chemical partitioning of heavy metals, sequential extraction procedures were adopted and it was found that arsenic was predominantly associated with the residual fraction among five fractional forms as much as over 85%, which is demonstrating that only less than 15% of all might be vulnerable to a selected washing agents. Among 6 kinds of washing agents applied on the screening for arsenic-contaminated soil, HCl and $H_3PO_4$ solution were selected as promising washing agents. In comparison with HCl and $H_3PO_4$ solutions for arsenic washing by kinetic experiment in the change of pH, soil-solution ratio, temperature, and washing solution concentration, $H_3PO_4$ solution was determined to best one of agents tested, which showed faster washing rate than HCl to accomplish regulatory goal.

Preparation of Porous Carbon by Chlorination of SiC (SiC의 염소화에 의한 다공성 탄소 입자 제조)

  • Park, Hoey Kyung;Park, Kyun Young;Kang, Tae Won;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 2012
  • SiC particles, 8.3 ${\mu}m$ in volume average diameter, were chlorinated in an alumina tubular reactor, 2.4 cm in diameter and 32 cm in length, with reactor temperature varied from 100 to $1200^{\circ}C$. The flow rate of the gas admitted to the reactor was held constant at 300 cc/min, the mole fraction of chlorine in the gas at 0.1 and the reaction time at 4 h. The chlorination was negligibly small up to the temperature of $500^{\circ}C$. Thereafter, the degree of chlorination increased remarkably with increasing temperature until $900^{\circ}C$. As the temperature was increased further from 900 to $1200^{\circ}C$, the increments in chlorination degree were rather small. At $1200^{\circ}C$, the chlorination has nearly been completed. The surface area of the residual carbon varied with chlorination temperature in a manner similar to that with the variation of chlorination degree with temperature. The surface area at $1200^{\circ}C$ was 912 $m^{2}/g$. A simple model was developed to predict the conversion of a SiC under various conditions. A Langmuir-Hinshelwood type rate law with two rate constants was employed in the model. Assuming that the two rate constants, $k_{1}$ and $k_{2}$, can be expressed as $A_{1e}^{-E_{1}/RT}$ and $A_{2e}^{-E_{2}/RT}$, the four parameters, $A_{1}$, $E_{1}$, $A_{2}$, and $E_{2}$ were determined to be 32.0 m/min, 103,071 J/mol, 2.24 $m^{3}/mol$ and 39,526 J/mol, respectively, through regression to best fit experimental data.

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

Removal of Chlorine from Fly Ash in Municipal Solid Waste Incineration Ash by Water Washing (수세에 의한 생활폐기물 소각재 중 비산재로부터 염소성분의 제거)

  • 안지환;한기천;김형석
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.36-43
    • /
    • 2001
  • The chlorine component in fly ash from municipal solid waste incineration ash was removed by water washing for the purpose of recycling fly ash as a raw material of ordinary portland cement. The samples were a different kind of 리y ashes using $Ca(OH)_2$and NaOH as media of wet scrubber for flue gas cleaning. The content of soluble salts of fly ash using $Ca(OH)_2$and NaOH was 32.8%, 50.1% and the content of chlorine component, 22.9% and 26.0% respectively, which was KCl, NaCl, CaC1OH mainly. When each fly ash was washed using water under conditions of a agitation speed of 300 rpm, a liquid to solid ratio of 10, most soluble salts in fly ash were dissolved within 30 minutes and the content of chlorine component in ash was diminished to the content of 4.4%, 2.O% at $20^{\circ}C$ and 1.7%, 0.8% at $50^{\circ}C$ respectively. And the main compound of residual chlorine component in ash after water washing was friedel`s salt ($3CaO.A1_2$$O_3$.$CaCl_2$.$10H2$O). From analysis results of water quality for wastewater by water washing, the components exceeding discharged wastewater standard were only Pb and Cd. But As pH was controlled to 10 with addition of $CO_2$(g) or $Na_2$$_CO3$in water, the concentration of heavy metals such as Pb and Cd was also under discharged wastewater standard.

  • PDF

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF