• 제목/요약/키워드: Residual mechanical property

검색결과 105건 처리시간 0.03초

HSB600강 GMA 용접부에서 입열량과 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향 (The effect of Heat input and PWHT on the microstructure and mechanical properties of HSB600 steel weldments)

  • 고진현;김남훈;장복수;주동휘;임영민
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5405-5411
    • /
    • 2011
  • 본 연구에서는 교량용 구조용 강재인 HSB600 강의 용접부에서 입열량 (1.5~3.6 kJ/mm)과 용접후 열처리(PWHT, $600^{\circ}C$, 40hr.)가 미세조직과 기계적 특성에 미치는 영향에 관해 연구하였다. HSB600 강재를 GMA용접을 실시하였다. 용접된 상태에서는 인장강도와 경도는 입열량이 증가할수록 저하되었으며 충격 흡수 에너지는 큰 차이를 보이지 않았다. 낮은 입열량인 1.5 kJ/mm에서 침상형 페라이트가 가장 많이 생성되었다. 용접후 열처리를 통해 경도와 인장강도가 저하되었고, 용착금속의 충격흡수에너지가 증가되었다.

SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성 (Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films)

  • 심현보;서창민;김종형;서민수
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

선택적 레이저 조형된 AlSi10Mg합금의 후열처리에 따른 Si-rich상 형상변화가 기계적 특성에 미치는 영향 (Influence of Si-rich Phase Morphologies on Mechanical Properties of AlSi10Mg Alloys processed by Selective Laser Melting and Post-Heat Treatment)

  • 남정우;엄영성;김경태;손인준
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.134-142
    • /
    • 2021
  • In this study, AlSi10Mg powders with average diameters of 44 ㎛ are additively manufactured into bulk samples using a selective laser melting (SLM) process. Post-heat treatment to reduce residual stress in the as-synthesized sample is performed at different temperatures. From the results of a tensile test, as the heat-treatment temperature increases from 270 to 320℃, strength decreases while elongation significantly increases up to 13% at 320℃. The microstructures and tensile properties of the two heat-treated samples at 290 and 320℃, respectively, are characterized and compared to those of the as-synthesized samples. Interestingly, the Si-rich phases that network in the as-synthesized state are discontinuously separated, and the size of the particle-shaped Si phases becomes large and spherical as the heat-treatment temperature increases. Due to these morphological changes of Si-rich phases, the reduction in tensile strengths and increase in elongations, respectively, can be obtained by the post-heat treatment process. These results provide fundamental information for the practical applications of AlSi10Mg parts fabricated by SLM.

R.F Sputtering으로 제조한 ZnO박막의 미세구조와 광학적 특성에 미치는 잔류응력의 영향 (The Residual Stress Effect on Microstructure and Optical Property of ZnO Films Produced by RF Sputtering)

  • 류상;김영만
    • 한국표면공학회지
    • /
    • 제38권4호
    • /
    • pp.144-149
    • /
    • 2005
  • ZnO박막을 R.F. sputtering방법으로 R.F Power와 기판온도를 공정변수로 하여 Si(100)과 $Al_2O_3(0001)$ 기판에 증착하였다. 공정변수에 따른 박막의 미세구조와 잔류응력 및 광학적 특성 등을 평가하였다. 전반적으로 R.F. Power증가에 따른 박막의 미세구조와 잔류응력 및 광학적 특성 등을 평가하였다. 전반적으로 R.F. Power증가에 따른 박막의 미세구조는 결정립이 커지면서 더 거칠어지는 것으로 나타났다. 기판온도 $800^{\cric}C$에서 증착된 박막의 경우, Si기판에 증착한 것보다 $Al_2O_3$기판에 증착된 박막의 막질이 우수한 것으로 나타났다. 박막의 잔류 응류변화는 R.F. Power 보다는 기판온도에 더 의존하는 것으로 나타났다. 대부분의 시편의 잔류응력이 공정변수인 기판온도가 증가할수록 작아지는 것으로 측정되었다. ZnO박막의 열안정성을 평가하기위해 열싸이클링을 실시하였다. 열싸이클링 결과 $Al_2O_3$(0001)기판에 증착된 박막이 Si(100)기판에 증착된 것보다 열안정성이 우수한 것으로 나타났다. PL측정의 경우, $Al_2O_3$기판에 증착된 ZnO박막이 Si기판에 증착된 것보다 UV영역의 발광이 크고 가시광선영역의 발광이 작은것으로 나타났다. 이것은 박막안의 결함이 작아서 낮은 잔류응력을 갖고 있기 때문인 것으로 생각된다.

이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발 (Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process)

  • 박희천;정호승;조종래;이낙규;오중석;한명섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

기체발생기용 질산암모늄 산화제 기반 복합고체추진제의 조성 및 기계적 물성 (A Study on the Formulation and Mechanical Properties of AN-based Composite Solid Propellant for an Application to Gas Generators)

  • 박정;김정수
    • 한국추진공학회지
    • /
    • 제13권5호
    • /
    • pp.1-6
    • /
    • 2009
  • 로켓시스템의 에너지원으로 적용할 수 있는 기체발생기용 복합 고체추진제의 개발과정을 기술한다. 80%의 고체입자 부하율과 양호한 유동성, 그리고 $-50^{\circ}{\sim}70^{\circ}C$에서 경화에 적절한 추진제 물성을 갖는 HTPB를 바인더로 하여, 낮은 화염온도, 적은 고체입자 잔사, 무독성 생성물의 추진제 제조가 가능한 AN을 제1종 산화제로, 탄도특성 제어에 필요한 AP를 제2종 산화제로 추진제 주요 조성이 구성된다. 기본조성을 근거로 하여 일련의 물성개선 시험이 수행되었으며 최대응력 8 bar 및 최대응력점 변형율 30%, 그리고 탄성계수 1000 psi 수준의 물성을 갖는 추진제 조성을 얻을 수 있었다.

하악 총의치 교합형태에 따른 하부조직에 미치는 교합력 양태의 3차원적 유합요소법 해석 (THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES OF COMPLETE DENTURE OCCLUSION)

  • 이영수;유광희
    • 대한치과보철학회지
    • /
    • 제30권2호
    • /
    • pp.286-318
    • /
    • 1992
  • The objective of preventive dentistry is the maintenance of a healthy dentition for the life of a patient. Unfortunately, if an individual has not received the benefit of a comprehensive program of preventive dentistry and has finally reached the edentulous state, as a consequence, he receives a set of complete denture. Dentures are mechanical devices and subject to the principles of mechanics. In some cases, the general health and nutritional status of the patient are felt to be the causative factors. But, the most important thing in residual ridge resorption is felt to be caused by the unequal distribution of functional forces. This study was to analyze mandibular stresses of complete denture occlusion by three dimensional finite element method. The results were as follows ; 1. As deformation and stress distribution of the complete denture of the mandible were concentrated on the upper lingual side of the mandible, alveolar ridge resorption of the mandible occurred from lingual side to labio-buccal side. 2. Analyzing by three dimensional F. E. M., the mandible is a very effective form for tolerating stress and deformation biomechanically. 3. According to the concentration of stress distibution in the upper buccal side of the lower posteriors, buccal shelf area must be a primary stress bearing area in the lower complete denture. 4. Lower complete denture moved horizontally to the balancing side under lateral occlusal force. 5. Bilateral balanced occlusion should be constructed in the complete denture for denture stability, especially in the protrusive movement. 6. Physical property of the denture base material was as important for stress distribution in the denture base as or even more than that in the mandible. 7. Impression technique is very important because of most of stress was concentrated between them due to close contact of the mandible and the denture base.

  • PDF

플라이애시 첨가에 따른 세라믹 벽타일 소지의 물성변화 (Influence of Fly Ash Addition on Properties of Ceramic Wall Tiles)

  • 김진호;조우석;황광택;한규성
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.76-81
    • /
    • 2017
  • Recently, there have been many efforts to establish suitable processes for recycling fly ash, which is produced in thermal power plants and which poses serious environmental problems. Use of fly ash as a major ingredient of ceramic tiles can increase fly ash utilization, as well as reduce the cost of raw materials in ceramic tile production. In this study, the effects of fly ash addition on ceramic tile properties such as bending strength, water absorption and porosity were investigated. A manufacturing process of ceramic tile was developed for utilization of fly ash with high carbon content. In this approach, it is important to hold the ceramic tiles at a temperature that is sufficient for carbon oxidation, before the pores supplying oxygen to the inside of the ceramic tile are sealed. Ceramic wall tiles were manufactured with 0-40wt% of fly ash addition. The water absorption and porosity of the fired body were slightly changed with increasing fly ash content up to 30wt% and decreased with greater amounts of fly ash addition. The bending strength of ceramic tile including 10wt% fly ash increased, reaching a level comparable to that of ceramic tile without fly ash.

열처리와 복합구조화를 통한 디스플레이용 기능성 고분자 필름의 내구성 향상 연구 (Durability Improvement of Functional Polymer Film by Heat Treatment and Micro/nano Hierarchical Structure for Display Applications)

  • 여나은;조원경;김두인;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.47-52
    • /
    • 2018
  • 본 연구에서는 디스플레이에 적용되는 기능성 고분자 필름의 나노구조에 의한 기계적 물성 저하 문제를 해결하기 위해 열처리 방법과 멀티스케일 계층구조를 통한 PMMA(Poly(methyl-methacrylate)) 필름의 내구성 향상에 대해 연구하였다. PMMA 필름의 기계적 특성을 향상시키기 위한 열처리 공정은 고온/고압의 자유제적 제어공정과 고온 공정 후 급속히 냉각시키는 공정으로 구성되어 있으며, 열 나노임프린트를 이용하여 스크래치로부터 나노구조를 보호하기 위한 멀티스케일 계층구조를 형성하였다. 연필경도 시험에 의해 발생한 미세구조의 손상에 대한 평가를 위해 표면 형상 변화와 기능성 변화를 평가하였으며, 이를 통하여 열처리와 멀티스케일 계층구조가 스크래치에 의한 정접촉각 감소와 투과율 손실 저감에 효과적임을 확인하였다.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.