• Title/Summary/Keyword: Residual gas

Search Result 572, Processing Time 0.04 seconds

An Experimental Assessment of the Effects of Residual Stresses on Fracture Behavior of the Plate (압축잔류응력이 판의 파괴 특성에 미치는 영향에 관한 실험적 평가)

  • Jang, Chang-Doo;Park, Yong-Kwan;Song, Ha-Cheol;Kim, Byung-Il
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.435-440
    • /
    • 2002
  • The quantitative assessment of the effect of the residual stress on fracture behavior was executed by some experiment and numerical analysis. First of all, artificial residual stresses were imposed on CT(Compact Tension) specimens by local heating using gas torch, and an appropriate distribution of residual stresses was obtained by thermal elastic-plastic FE analysis. To certify the result of the FE analysis, an experimental measurement was performed in accordance with ASTM standard. Fracture toughness test was executed on the several types of specimens. The first type was the specimen without residual stresses, and the others had different peak value of compressive residual stress at crack front via controlling the heat flux. All the test results were presented on th J resistance(JR) curves and discussed to verify the effect of compressive residual stresses on fracture behavior.

A Study on Semi Quantitative Risk Analysis for Air Separation Unit using a GRA(Generic Risk Analysis) Method (GRA(Generic Risk Analysis) 기법을 이용한 공기분리시설에 대한 준 정량적 위험성 평가에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.56-66
    • /
    • 2013
  • The gas production plants supply the inert gas to production plants for maintaining safe operation and also supply combustible, flammable, explosive and toxic gases as functions of basic materials needed for producing chemical goods. In addition, gas plants need to be safe and reliable operation because they are operated under high temperature, high pressure, cryogenic and catalytic reactions. As these plants have a complex process in operation, there has been a risk that major industrial accidents such as a fire, explosion and toxic gas released, also risks of asphyxiations by inert gases and burns caused by high temperature and cryogenic substances. This study is to carry out the semi quantitative risk assesment method which is the generic risk analysis (GRA). This method is applied to air separation unit(ASU) to identify its initial risk, safety barriers, residual risk and elements important for safety(EIS). The result of this study, suggested the management tools and procedures of implementation for EIS management.

Evaluation of Residual Stress on Welded Joint in API X65 Pipe Line through Nondestructive Instrumented Indentation Technique (비파괴 계장화 압입시험기법을 통한 API X65 배관 용접부 잔류응력 평가)

  • 지원재;이윤희;김우식;김철만;권동일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.547-554
    • /
    • 2003
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive instrumented indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

Evaluation of Residual Stress for Weldments Using Continuous Indentation Technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee Y. H.;Choi Y.;Kim K. H.;Kwon D.;Lee J. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.541-546
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

Evaluation of residual stress for weldments using continuous indentation technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee J. S.;Choi Y.;Kim K. H.;Kwon D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.126-129
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

  • PDF

A Study on the Mechanical Properties and Residual Stress Distribution of Ti Welding Material (Ti 용접재의 기계적 특성 및 잔류응력의 분포에 관한 연구)

  • 최병기;장경천;국중민;정장만;구남열
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The objective of this paper was to investigate the welding characteristics according to the restraint condition. the pass number, and the shield gas quantity with titanium commonly using in power stations, aircrafts, ships, and so forth. The residual stress distribution was measured under restraint and nonrestraint welding conditions. The tensile strength and elongation of the 4 pass welded specimen were shown higher about 10% and 30% than those of the 7 pass welded specimen at the same welding conditions respectably. Also, the more shield gas quantity and the shorter natural cooling time, the higher tensile strength and the lower elongation.

Distributions of Local Supply and Exhaust Effectiveness according to Room Airflow Patterns

  • Han, Hwa-Taik;Choi, Sun-Ho;Lee, Woo-Won
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.177-183
    • /
    • 2002
  • A pulsed tracer gas technique is applied to measure the distributions of local mean age and local mean residual-life-time of air in a half-scale experimental chamber, The airflow patterns in the chamber are visualized by a Helium bubble generator for three different exhaust locations. A supply slot is located at the top of a right wall, and an exhaust slot is at either bottom-left (Case 1), bottom-right (Case 2), or top-left (Case 3) location. Results show that the distributions of local mean age and local mean residual-life-time are different from each other, but both of them are closely related to the airflow pattern in the space. Included are discussions on explaining the variations of overall room ventilation effectiveness depending upon airflow rates for three different supply-exhaust configurations.

A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine (라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Lim, Choon-Mee
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.

Life Evaluation of Gas Turbine Engine Disk based on Retirement for Cause Concept (Retirement For Cause 개념에 의한 가스터빈 디스크 수명의 평가)

  • Nam, Seung-Hun;Park, Jong-Hwa;Kim, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.365-373
    • /
    • 2002
  • For gas turbine engines, the safe life methodology has historically been used fur fatigue life management of failure critical engine components. The safe retirement limit is necessarily determined by a conservative life evaluation procedure, thereby many components which have a long residual life are discarded. The objective of this study is to introduce the damage tolerant design concept into the life management for aircraft engine component instead of conservative fatigue life methodology which has been used for both design and maintenance. Crack growth data were collected on a nickel base superalloy which have been subjected to combined static and cyclic loading at elevated temperatures. Stress analysis fur turbine disk was carried out. The program for computing creep-fatigue crack growth was developed. The residual lifes of turbine disk component under various temperatures and conditions using creep-fatigue crack growth data were estimated. As the result of analysis, it was confirmed that retirement fur cause concept was applicable to the evaluation of residual life of retired turbine disk which had been designed based on the conventional fatigue life methodology.