• Title/Summary/Keyword: Residual frequency offset

Search Result 32, Processing Time 0.016 seconds

Correction on Current Measurement Errors for Accurate Flux Estimation of AC Drives at Low Stator Frequency (저속영역에서 교류전동기의 정확한 자속추정을 위한 전류측정오차 보상)

  • Cho, Kyung-Rae;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • This paper presents an on-line correction method of current measurement errors for a pure-integration-based flux estimation down to 1-Hz stator frequency. An observer-based approach is taken as one possible solution of eliminating the dc offset and the negative sequence component of unbalanced gains in the synchronous coordinate. At the same time, the positive sequence component estimation is performed by creating an error signal between a motor model reference and an estimated q-axis rotor flux established by a permanent magnet (PM) in the synchronous coordinate. The compensator utilizes a PI controller that controls the error signal to zero. The proposed technique further contains a residual error compensator to completely eliminate miscellaneous disturbances in the estimated flux. The developed algorithm has been implemented on a 1.1-kW permanent magnet synchronous motor (PMSM) drive to confirm the effectiveness of the proposed scheme.

Method of a Multi-mode Low Rate Speech Coder Using a Transient Coding at the Rate of 2.4 kbit/s (전이구간 부호화를 이용한 2.4 kbit/s 다중모드 음성 부호화 방법)

  • Ahn Yeong-uk;Kim Jong-hak;Lee Insung;Kwon Oh-ju;Bae Mun-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.131-142
    • /
    • 2005
  • The low rate speech coders under 4 kbit/s are based on sinusoidal transform coding (STC) or multiband excitation (MBE). Since the harmonic coders are not efficient to reconstruct the transient segments of speech signals such as onsets, offsets, non-periodic signals, etc, the coders do not provide a natural speech quality. This paper proposes method of a efficient transient model :d a multi-mode low rate coder at 2.4 kbit/s that uses harmonic model for the voiced speech, stochastic model for the unvoiced speech and a model using aperiodic pulse location tracking (APPT) for the transient segments, respectively. The APPT utilizes the harmonic model. The proposed method uses different models depending on the characteristics of LPC residual signals. In addition, it can combine synthesized excitation in CELP coding at time domain with that in harmonic coding at frequency domain efficiently. The proposed coder shows a better speech quality than 2.4 kbit/s version of the mixed excitation linear prediction (MELP) coder that is a U.S. Federal Standard for speech coder.