• Title/Summary/Keyword: Residual energy

Search Result 1,091, Processing Time 0.034 seconds

Bond deterioration of corroded steel in two different concrete mixes

  • Zhou, Haijun;Liang, Xuebing;Wang, Zeqiang;Zhang, Xiaolin;Xing, Feng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.725-734
    • /
    • 2017
  • This paper investigated the effects of rebar corrosion on bond performance between rebar and two different concrete mixes (compressive strengths of 20.7 MPa and 44.4 MPa). The specimen was designed as a rebar centrally embedded in a 200 mm concrete cube, with two stirrups around the rebar to supply confinement. An electrochemical accelerated corrosion technique was applied to corrode the rebar. 120 specimens of two different concrete mixes with various reinforcing steel corrosion levels were manufactured. The corrosion crack opening width and length were recorded in detail during and after the corrosion process. Three different loading schemes: monotonic pull-out load, 10 cycles of constant slip loading followed by pull-out and varied slip loading followed by pull-out, were carried out on the specimens. The effects of rebar corrosion with two different concrete mixes on corrosion crack opening, bond strength and corresponding slip value, initial slope of bond-slip curve, residual bond stress, mechanical interaction stress, and energy dissipation, were discussed in detail. The mean value and coefficient of variation of these parameters were also derived. It was found that the coefficient of variation of the parameters of the corroded specimens was larger than those with intact rebar. There is also obvious difference in the two different concrete mixes for the effects of rebar corrosion on bond-slip parameters.

Seismic behavior of properly designed CBFs equipped with NiTi SMA braces

  • Qiu, Canxing;Zhang, Yichen;Qi, Jian;Li, Han
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.479-491
    • /
    • 2018
  • Shape memory alloys (SMA) exhibit superelasticity which refers to the capability of entirely recovering large deformation upon removal of applied forces and dissipating input energy during the cyclic loading reversals when the environment is above the austenite finish temperature. This property is increasingly favored by the earthquake engineering community, which is currently developing resilient structures with prompt recovery and affordable repair cost after earthquakes. Compared with the other SMAs, NiTi SMAs are widely deemed as the most promising candidate in earthquake engineering. This paper contributes to evaluate the seismic performance of properly designed concentrically braced frames (CBFs) equipped with NiTi SMA braces under earthquake ground motions corresponding to frequently-occurred, design-basis and maximum-considered earthquakes. An ad hoc seismic design approach that was previously developed for structures with idealized SMAs was introduced to size the building members, by explicitly considering the strain hardening characteristics of NiTi SMA particularly. The design procedure was conducted to compliant with a suite of ground motions associated with the hazard level of design-basis earthquake. A total of four six-story CBFs were designed by setting different ductility demands for SMA braces while designating with a same interstory drift target for the structural systems. The analytical results show that all the designed frames successfully met the prescribed seismic performance objectives, including targeted maximum interstory drift, uniform deformation demand over building height, eliminated residual deformation, controlled floor acceleration, and slight damage in the main frame. In addition, this study indicates that the strain hardening behavior does not necessarily impose undesirable impact on the global seismic performance of CBFs with SMA braces.

Kissing of Sub-conductors due to Magnetic Forces in a 154 kV Bundled Overhead Transmission Line (154 kV 복도체 가공송전선로에서 전자력에 의한 소도체간 접촉)

  • Kim, Sang-Beom;Noh, Hee-Won;Kim, Young-Hong;Ko, Kwang-Man;Park, Jong-Hyuk;Kim, Sang-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.383-389
    • /
    • 2016
  • Kissing of sub-conductors due to magnetic forces has been investigated in a 154 kV bundled overhead transmission line. With increasing ampacity of the conductors and enlarging the distance between spacers, lager magnetic force was measured. When the phase ampacity was 2,000 amps and the distance between two adjacent spacers was 68 m, for instance, the conductors became unstable and vibrated with a frequency of several herts. Furthermore, when the ampacity was 2,250 amps and the distance between spacers was 136 m, the two sub-conductors were contacted. Analysing the magnetic forces with distance of spacers, the safe distance of spacers to avoid contact of sub-conductors was presented. The change of the safe distance is discussed due to various parameters, such as residual stresses and wind pressures, in the real transmission lines.

Temperature effect on seismic performance of CBFs equipped with SMA braces

  • Qiu, Canxing;Zhao, Xingnan
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.495-508
    • /
    • 2018
  • Shape memory alloys (SMAs) exhibit superelasticity given the ambient temperature is above the austenite finish temperature threshold, the magnitude of which significantly depends on the metal ingredients though. For the monocrystalline CuAlBe SMAs, their superelasticity was found being maintained even when the ambient temperature is down to $-40^{\circ}C$. Thus this makes such SMAs particularly favorable for outdoor seismic applications, such as the framed structures located in cold regions with substantial temperature oscillation. Due to the thermo-mechanical coupling mechanism, the hysteretic properties of SMAs vary with temperature change, primarily including altered material strength and different damping. Thus, this study adopted the monocrystalline CuAlBe SMAs as the kernel component of the SMA braces. To quantify the seismic response characteristics at various temperatures, a wide temperature range from -40 to $40^{\circ}C$ are considered. The middle temperature, $0^{\circ}C$, is artificially selected to be the reference temperature in the performance comparisons, as well the corresponding material properties are used in the seismic design procedure. Both single-degree-of-freedom systems and a six-story braced frame were numerically analyzed by subjecting them to a suite of earthquake ground motions corresponding to the design basis hazard level. To the frame structures, the analytical results show that temperature variation generates minor influence on deformation and energy demands, whereas low temperatures help to reduce acceleration demands. Further, attributed to the excellent superelasticity of the monocrystalline CuAlBe SMAs, the frames successfully maintain recentering capability without leaving residual deformation upon considered earthquakes, even when the temperature is down to $-40^{\circ}C$.

A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo (울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구)

  • Kim, Hee-Jong;Yoon, Ill-Hee;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.629-636
    • /
    • 2004
  • In order to study developments of the marine atmosphere boundary layer in cloud incoming, important parameters like heat advection, surface layer heat flux, and radiation energy were estimated using the rawinsonde, AWS data, satellite images, and buoy data which was installed at the East Sea. We explained the variation and the development of mixed layer in terms of surface layer heat flux and long wave radiation under the cloudy sky. The heat flux was obtained by means of the bulk method. Conservation of heat was analysed by heat budget equation, which was consist of buoy data in the East sea, and sounding data at Ulleungdo and at Pohang. During the inflow of cloud, radiative cooling at the surface after was suppressed and long wave radiation from cloud played a role of warming. The surface layer temperature was also remained warm by influence of warm advection from south-easterly direction. The air temperature in night was increased, as a result, mixed layer was not destroyed and The nocturnal boundary layer was composed of the mixed layer and the residual layer.

A Study on an Improvement of the Performance by Spectrum Analysis with Variable Window in CELP Vocoder (CELP 부호화기에서 가변 윈도우 스펙트럼 분석에 의한 성능 향상에 관한 연구)

  • Min So-Yeon;Kim Eun-Hwan;Bae Myung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.233-238
    • /
    • 2005
  • In general CELP(Code Excited Linear Prediction) type vocoders provide good speech qualify around 4.8kbps. Among them, G.723.1 developed for Internet Phone and video-conferencing includes two vocoders, 5.3kbps ACELP(Algebraic-CELP) and 6.3kbps MP-MLQ(Multi-Pulse Maximum Likelihood Quantization) In order to improve the speech qualify in CELP vocoder, in this paper. we proposed a new spectrum analysis algorithm with variable window In CELP vocoder, the spectrum of the synthesised speech signal is distorted because the fixed size windows is used for spectrum analysis. So we have measured the spectral leakage and in order to minimize the spectral leakage have adjusted the window size. Applying this method G.723.1 ACELP, we can got SD(Spectral Distortion) reduction 0.084(dB), residual energy reduction 6.3$\%$ and MOS(Mean Opinion Score) improvement 0.1.

  • PDF

Interfacial Properties and Residual Stress of Carbon Fiber/Epoxy-AT PEI Composite with Matrix Fracture Toughness using Microdroplet Test and Electrical Resistance Measurements (Microdroplet 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 수지파괴인성에 따른 잔류응력 및 계면물성)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.109-113
    • /
    • 2002
  • Interfacial and electrical properties for the carbon fiber reinforced epoxy-amine terminated (AT) PEI composites were performed using microdroplet test and electrical resistance measurements. As AT PEI content increased, the fracture toughness of epoxy-AT PEI matrix increased, and IFSS was improved due to the improved toughness and energy absorption mechanisms of AT PEI. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 wt% AT PEI content, ductile microfailure mode appeared because of improved fracture toughness. After curing, the changes of electrical resistance (ΔR) with increasing AT PEI content increased gradually because of thermal shrinkage. The matrix fracture toughness was correlated to IFSS, TEC and electrical resistance. In cyclic strain test, the maximum stress and their slope of the neat epoxy case were higher than those of 15 wt% AT PEI. The results obtained from electrical resistance measurements under curing process and reversible stress and strain were consistent well with matrix toughness properties.

  • PDF

Computation of Meteorologically-Induced Circulation on the East China Sea using a Fine Grid Three-dimensional Numerical Model (세격자삼차원 수치 모형에 의한 동중국해의 기상학적으로 유발된 해류순환의 산정)

  • Park, Byung-Ho;Suh, Kyung-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.45-58
    • /
    • 1992
  • A three-dimensional hydrodynamic numerical model is used to compute the annual and seasonal meteorologically-induced residual circulation on the Yellow Sea and the East China Sea continental shelf. The model is formulated having irregular coastal boundaires and non-uniform depth distribution representative of nature. The previous three-dimensional model of the East China Sea (Choi. 19U) has been further refined to resolve the flow over the continental shelf in more detail. The mesh resolution of the present finite difference grid system used is 4 minutes latitude by 5 minutes longitude over the entire shelf. The circulation pattern showing depth and spatial distribution of currents over the Yellow Sea and the East China Sea is presented. Meteorologically-induced currents are subsequently used to compute turn-over times for the three depths (surface. mid-depth. bottom) and the total water column of various regions of the Yellow Sea and the East China Sea.

  • PDF

A Location Information-based Gradient Routing Algorithm for Wireless Ad Hoc Networks (무선 애드혹 네트워크를 위한 위치정보 기반 기울기 라우팅 알고리즘)

  • Bang, Min-Young;Lee, Bong-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.259-270
    • /
    • 2010
  • In this paper, a Location Information-based Gradient Routing (LIGR) algorithm is proposed for setting up routing path based on physical location information of sensor nodes in wireless ad-hoc networks. LIGR algorithm reduces the unnecessary data transmission time, route search time, and propagation delay time of packet by determining the transmission direction and search range through the gradient from the source node to sink node using the physical location information. In addition, the low battery nodes are supposed to have the second or third priority in case of forwarding node selection, which reduces the possibility of selecting the low battery nodes. As a result, the low battery node functions as host node rather than router in the wireless sensor networks. The LIGR protocol performed better than the Logical Grid Routing (LGR) protocol in the average receiving rate, delay time, the average residual energy, and the network processing ratio.

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF