• 제목/요약/키워드: Residual energy

검색결과 1,098건 처리시간 0.025초

Optimal Harvest-Use-Store Design for Delay-Constrained Energy Harvesting Wireless Communications

  • Yuan, Fangchao;Jin, Shi;Wong, Kai-Kit;Zhang, Q.T.;Zhu, Hongbo
    • Journal of Communications and Networks
    • /
    • 제18권6호
    • /
    • pp.902-912
    • /
    • 2016
  • Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes.

족부보장구(Ankle Foot Orthosis, A.F.O.)용 복합재료의 충격에너지 거동 (Impact Energy Behavior in Composite Materials of Ankle Foot Orthosis (A.F.O.))

  • 김철웅;송삼홍;오동준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.330-335
    • /
    • 2004
  • The needs of walking assistive device such as the Ankle Foot Orthosis (A.F.O.) are getting greater than before. However, most of the A.F.O. are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O. which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, $[0/90]_{2S}$) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

  • PDF

잔열 제거용 40 I/min급 환단면 선형유도전자펌프의 설계 (Design of ALIP with Flowrate of 40 I/min for the Removal of Residual Heat)

  • 김희령;남호윤;김용균;최병해;김종만;황종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.13-15
    • /
    • 1998
  • EM(Electro Magnetic) pump is used for the purpose of transporting liquid sodium coolant with electrical conductivity in the LMR(Liquid Metal Reactor). In the present study. pilot EM pump has been designed by using of equivalent circuit method which is commonly employed to analyze linear induction machines for the test of removal of residual heat. The length and diameter of the pump have fixed values of 840 mm and 101.6 mm each by taking account of geometrical size of circulation loop for the installation of EM pump. Flowrate versus developing pressure is related from Laithwaite's standard design formula and the characteristic analyses of developing force and efficiency are carried out according to change of input frequency. From the characteristic curve, input frequency of 13 Hz is determined as the design frequency. On the other hand, The annular air gap size of 6.05 mm is selected not to bring about too much hydraulic loss. Resultantly design analysis makes pump have the electrical input of 604 VA and the hydrodynamical capacity of 1.3 bars and 40 l/min.

  • PDF

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

선체고장력강 레이저 용접부의 잔류응력분포 특성에 관한 연구 (Welding Residual Stresses Distribution Characteristics of High Tensile Steel for Ship Structures in Laser Welding)

  • 방한서;윤병현;김영표;임채환
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.35-39
    • /
    • 2003
  • Laser welding has good characteristics such as high density energy, high speed and short heating time, as compared with conventional arc welding. The joint of laser welding also has good mechanical characteristics in general. However, relevant research is not sufficient to understand laser welding in the view point of mechanics until a recent date. In this paper, numerical simulation has been conducted to analyze distribution of welding residual stresses. Welding residual stresses of specimen have been measured by using sectioning method to compare the results between simulation and experiment.

고온.고습 환경에서 CFRP 적층재의 충격손상와 잔류강도 (Impact Damages and Residual Strength of CFRP Laminates under the Hygrothermal Environment)

  • 정종안;양인영
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3748-3758
    • /
    • 1996
  • This study is to investigate experimentally relationships between the impact energy and moisture absorption characteristies vs.the residual bending strength with the variation of stacking seqences. When Carbon-fiber reinforced plastics(CFRP) impact-induced laminates are subjected to the high temperatures and hygrothermal effects, it is found that what CFRP laminates are impacted by a steel ball (5 mm in diametar) ; thus, the generated delamination is observed by the ultrasonic microscope. And the residual bending strength is evaluated by a three-point bending test. Also, a thermostat is used in test with the unimpacted and impacted specimens for the moisture experimentaiton. The percision electro lever scles is used to measure the moisture content(1/10, 000g).

도상자갈 비산에 의한 경량 대차프레임 적용 유리/에폭시 적층 복합재의 충격손상 및 충격 후 잔류압축강도 평가 (Evaluation of Impact Damage and Residual Compression Strength after Impact of Glass/Epoxy Laminate Composites for Lightweight Bogie Frame induced by Ballast-Flying Phenomena)

  • 구준성;신광복;김정석
    • 한국철도학회논문집
    • /
    • 제15권2호
    • /
    • pp.109-115
    • /
    • 2012
  • 허본 논문에서는 도상자갈 비산에 의한 GFRP 복합재 대차프레임의 구조안전성을 평가하기 위해 대차프레임의 스킨부를 구성하는 유리섬유/에폭시 적층 복합재의 충격시험과 충격 후 잔류압축시험을 수행하였다. 충격시험은 충격시험장비를 사용하여 5J, 10J, 그리고 20J의 충격에너지에 대해 수행하였고, 선로상의 도상자갈 비산을 모사하기 위해 구형, 육면체형, 그리고 원뿔형의 충격체를 설계하여 충격시험을 수행하였다. 충격손상을 갖는 적층 복합재의 잔류압축강도를 평가하기 위해 충격 후 압축시험을 수행하여 충격에 의한 재료의 물성저하 여부를 판단하였다. 본 연구를 통하여 충격에너지가 증가함에 따라 적층 복합재의 충격손상영역과 압축강도저하가 증가하는 것을 확인하였으며, 원뿔형 형상의 도상자갈이 다른 형상에 비해 재료의 손상을 가중시키는 것을 확인하였다.

칩 온 보드 패키지 적용을 위한 프리프레그 표면 잔류 불순물이 봉지재의 젖음성에 미치는 영향 (Effect of the Residual Impurity on the Prepreg Surface on the Wettability of Encapsulant for Chip on Board Package)

  • 김가희;김도헌;손기락;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.9-15
    • /
    • 2024
  • 칩 온 보드(chip on board) 패키지 적용을 위해 프리프레그(prepreg) 표면에 잔류하는 불순물이 봉지재(encapsulant)의 젖음성에 미치는 영향을 규명하기 위해 전자현미경(scanning electron microscope)과 X-선 광전자 분광기(X-ray photoelectron spectroscopy)를 이용하여 미세구조, 조성 및 화학 결합을 분석하였다. 프리프레그 표면에 잔류 불순물이 존재하는 시편의 경우 잔류 불순물이 존재하지 않는 시편보다 접촉각이 28° 높게 측정되었으며, C-O 결합은 4% 낮게 도출되었다. 이는 공정 중 잔류 불순물인 Na, F이 프리프레그 표면에 존재하는 C와 화학 반응을 하여 C-F 결합 생성으로 인해 프리프레그 표면의 C-O 결합이 끊어지면서 프리프레그 표면에너지가 낮아지게 되고 이로 인해 접촉각이 증가하게 되면서 봉지재의 젖음성이 저하되는 것으로 판단된다.

기준 베타선장의 에너지 스펙트럼 측정 (The Measurement of National Standard ${\beta}$-Rays Energy Spectrum)

  • 김철항;이철영;김현문;하석호;전국진
    • 한국의학물리학회지:의학물리
    • /
    • 제23권4호
    • /
    • pp.285-291
    • /
    • 2012
  • Si(Li) 검출기를 이용해 한국표준과학연구원에서 보유한 베타선 선원인 $^{147}Pm$, $^{85}Kr$, $^{90}Sr+^{90}Y$ 선원의 순수 베타선 에너지 스펙트럼을 측정하였고 이 측정 스펙트럼에 대한 잔여에너지와 질량충돌저지능비를 산출하였다. 베타선의 잔여에너지는 $^{147}Pm$, $^{85}Kr$, $^{90}Sr+^{90}Y$ 선원에 대하여 각각 0.14, 0.57, 0.93 MeV으로 평가되었고 질량충돌저지능비는 각각 1.123, 1.120, 1.109이었다.

Energy dissipation response of brick masonry under cyclic compressive loading

  • Senthivel, R.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.405-422
    • /
    • 2003
  • Scaled brick masonry panels were tested under cyclic unialxial compression loading to evaluate its deformation characteristics. An envelope stress - strain curves, a common point curves and stability point curves were obtained for various cyclic test conditions. Loops of the stress-strain hysteresis were used to determine the energy dissipation for each cycle. Empirical expressions were proposed for the relations between energy dissipation and envelope and residual strains. These relations indicated that the decay of masonry strength starts at about two-third of peak stress.