• Title/Summary/Keyword: Residual Network(ResNet)

Search Result 32, Processing Time 0.02 seconds

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

Respiratory Motion Correction on PET Images Based on 3D Convolutional Neural Network

  • Hou, Yibo;He, Jianfeng;She, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2191-2208
    • /
    • 2022
  • Motion blur in PET (Positron emission tomography) images induced by respiratory motion will reduce the quality of imaging. Although exiting methods have positive performance for respiratory motion correction in medical practice, there are still many aspects that can be improved. In this paper, an improved 3D unsupervised framework, Res-Voxel based on U-Net network was proposed for the motion correction. The Res-Voxel with multiple residual structure may improve the ability of predicting deformation field, and use a smaller convolution kernel to reduce the parameters of the model and decrease the amount of computation required. The proposed is tested on the simulated PET imaging data and the clinical data. Experimental results demonstrate that the proposed achieved Dice indices 93.81%, 81.75% and 75.10% on the simulated geometric phantom data, voxel phantom data and the clinical data respectively. It is demonstrated that the proposed method can improve the registration and correction performance of PET image.

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.

A Novel Transfer Learning-Based Algorithm for Detecting Violence Images

  • Meng, Yuyan;Yuan, Deyu;Su, Shaofan;Ming, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1818-1832
    • /
    • 2022
  • Violence in the Internet era poses a new challenge to the current counter-riot work, and according to research and analysis, most of the violent incidents occurring are related to the dissemination of violence images. The use of the popular deep learning neural network to automatically analyze the massive amount of images on the Internet has become one of the important tools in the current counter-violence work. This paper focuses on the use of transfer learning techniques and the introduction of an attention mechanism to the residual network (ResNet) model for the classification and identification of violence images. Firstly, the feature elements of the violence images are identified and a targeted dataset is constructed; secondly, due to the small number of positive samples of violence images, pre-training and attention mechanisms are introduced to suggest improvements to the traditional residual network; finally, the improved model is trained and tested on the constructed dedicated dataset. The research results show that the improved network model can quickly and accurately identify violence images with an average accuracy rate of 92.20%, thus effectively reducing the cost of manual identification and providing decision support for combating rebel organization activities.

Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks (딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석)

  • Bae, Ji-Hoon;Yim, Junho;Yu, Jaehak;Kim, Kwihoon;Kim, Junmo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.35-41
    • /
    • 2017
  • In this paper, we analyze the performance of the recently introduced Hint-knowledge distillation (KD) training approach based on the teacher-student framework for knowledge distillation and knowledge transfer. As a deep neural network (DNN) considered in this paper, the deep residual network (ResNet), which is currently regarded as the latest DNN, is used for the teacher-student framework. Therefore, when implementing the Hint-KD training, we investigate the impact on the weight of KD information based on the soften factor in terms of classification accuracy using the widely used open deep learning frameworks, Caffe. As a results, it can be seen that the recognition accuracy of the student model is improved when the fixed value of the KD information is maintained rather than the gradual decrease of the KD information during training.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification (자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구)

  • Pham, Chuyen;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.462-472
    • /
    • 2020
  • Rock classification is fundamental discipline of exploring geological and geotechnical features in a site, which, however, may not be easy works because of high diversity of rock shape and color according to its origin, geological history and so on. With the great success of convolutional neural networks (CNN) in many different image-based classification tasks, there has been increasing interest in taking advantage of CNN to classify geological material. In this study, a feasibility of the deep CNN is investigated for automatically and accurately identifying rock types, focusing on the condition of various shapes and colors even in the same rock type. It can be further developed to a mobile application for assisting geologist in classifying rocks in fieldwork. The structure of CNN model used in this study is based on a deep residual neural network (ResNet), which is an ultra-deep CNN using in object detection and classification. The proposed CNN was trained on 10 typical rock types with an overall accuracy of 84% on the test set. The result demonstrates that the proposed approach is not only able to classify rock type using images, but also represents an improvement as taking highly diverse rock image dataset as input.

Sound Event Classification Based on Concatenated Residual Network Applicable to Closed Captioning Services for the Hearing Impaired (청각장애인용 자막방송 서비스를 위한 연쇄잔차 신경망 기반 음향 사건 분류 기법)

  • Kim, Nam Kyun;Park, Dong Keun;Kim, Jun Ho;Kim, Hong Kook;Ahn, Chung Hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.472-475
    • /
    • 2020
  • 본 논문에서는 청각장애인에게 자막방송을 제공하기 위하여 오디오 콘텐츠에 등장하는 음향 사건을 분류하는 기법을 제안한다. 제안된 기법은 복수의 잔차 신경망(ResNet)을 연결하는 연쇄잔차(concatenated residual) 신경망 구조를 갖는다. 신경망의 입력 특징을 위해 음성의 멜-주파수 켑스트럼 벡터를 다수의 프레임으로 결합하여 형성한 2 차원 이미지와 전체 프레임에 대한 멜-주파수 켑스트럼 벡터들로부터 얻은 1 차원의 통계 특징벡터를 얻는다. 각각의 입력은 2 차원 잔차 신경망과 1 차원 잔차 신경망으로 모델링되고, 두 개의 잔차 신경망을 연쇄연결(concatenation)하는 구조를 가진 연쇄잔차 신경망으로 구성된다. 성능평가를 위해 수집된 데이터셋으로부터 6-fold 교차검증을 통해 평가한 결과, 85.48%의 분류 정확도를 얻을 수 있었다.

  • PDF

A deep learning model based on triplet losses for a similar child drawing selection algorithm (Triplet Loss 기반 딥러닝 모델을 통한 유사 아동 그림 선별 알고리즘)

  • Moon, Jiyu;Kim, Min-Jong;Lee, Seong-Oak;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The goal of this paper is to create a deep learning model based on triplet loss for generating similar child drawing selection algorithms. To assess the similarity of children's drawings, the distance between feature vectors belonging to the same class should be close, and the distance between feature vectors belonging to different classes should be greater. Therefore, a similar child drawing selection algorithm was developed in this study by building a deep learning model combining Triplet Loss and residual network(ResNet), which has an advantage in measuring image similarity regardless of the number of classes. Finally, using this model's similar child drawing selection algorithm, the similarity between the target child drawing and the other drawings can be measured and drawings with a high similarity can be chosen.