• Title/Summary/Keyword: Residual Aluminum

Search Result 174, Processing Time 0.025 seconds

A Study on Electromagnetic Joining of Aluminum Tubes to Polyurethane Cores (전자기 성형에 의한 알루미늄 합금관과 폴리우레탄봉의 접합연구)

  • Kim, Nam-Hwan;Son, Hui-Sik;Hwang, Un-Seok;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 1992
  • The joining processes of aluminum alloy tubes and polyurethane cores by electromagnetic impulsive compression are studied. The influences of various geometrical factors (the length of joined part, the thickness of tube, and the clearance between tube and core) and the process factors(the discharged energy and the number of discharge)are examined experimentally and discussed. And the magnetic pressure in metal/polymer joining is calculated and is compared to the pressure in metal/metal joining. The following results are obtained: (1) The joining strength is dependent upon the residual radial strain of the polyurethane cores. (2) The joining strength increases as discharged energy and the number of discharge increase, but decreases as the clearance, thickness and joining length of tube increases. (3) In the case of metal/polymer joining energy loss is increased and the value of magnetic pressure is less than that in the case of metal/metal joining.

  • PDF

Evaluation of Elastic Properties of Anisotropic Cylindrical Tubes Using an Ultrasonic Resonance Scattering Spectroscopy

  • Kim, Jin-Yeon;Li, Zheng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.548-557
    • /
    • 2010
  • An ultrasonic resonance scattering spectroscopy technique is developed and applied for reconstructing elastic constants of a transversely isotropic cylindrical component. Immersion ultrasonic measurements are performed on tube samples made from a boron/aluminum composite material to obtain resonance frequencies and dispersion curves of different guided wave modes propagating in the tube. Theoretical analysis on the acoustic resonance scattering from a transversely isotropic cylindrical tube is also performed, from which complete backscattering and resonance scattering spectra and theoretical dispersion curves are calculated. A sensitive change of the dispersion curves to the elastic properties of the composite tube is observed for both normal and oblique incidences; this is exploited for a systematic evaluation of damage and elastic constants of the composite tube samples. The elastic constants of two boron/aluminum composite tube samples manufactured under different conditions are reconstructed through an optimization procedure in which the residual between the experimental and theoretical phase velocities (dispersion curves) is minimized.

Recovery of ultrafine particles from Chemical-Mechanical Polishing wastewater discharged by the semiconductor industry

  • Tu, Chia-Wei;Wen, Shaw-Bing;Dahtong Ray;Shen, Yun-Hwei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.715-718
    • /
    • 2001
  • This study uses traditional alum coagulation and sedimentation process to treat CMP wastewater from cleaning after polishing. The primary goal is to successfully recycle both solid fines and water for semiconductor manufacturing. Results indicated that CMP wastewater may be successfully treated to recover clean water and fine particles by alum coagulation. The optimum operating conditions for coagulation are as fellowing: alum dosage of 10 ppm, pH at 5, rapid mixing speed at 800 rpm, 5 min rapid mixing time, and long slow mixing time. The treated water with low turbidity and an average residual aluminum ion concentration of 0.23 ppm may be considered for reuse. The settled sludge after alum coagulation contains mainly SiO$_2$particle with a minor content of aluminum (1.7 wt%) may be considered as raw materials for glass and ceramic industry.

  • PDF

Elasto-plastic Analysis of a hydrogen pressure vessel of Composite materials (복합재료 수소 압력용기의 탄소성 해석)

  • Do, Ki-Won;Han, Hoon-Hee;Ha, Sung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.275-280
    • /
    • 2008
  • To improve the durability of a hydrogen pressure vessel which is applied high-pressure, it needs the autofrettage process which induces compressive residual stress in the Aluminum liner. This study presents the elasto-plastic analysis to predict the behavior of structure accurately, and the Tsai-Wu failure criterion is applied to predict failure of pressure vessel of Aluminum liner and composite materials. Generally, plastic analysis is more complex than elastic analysis and has much time to predict. To complement its weakness, the AxicomPro(EXCEL program), applied radial return algorithm and nonlinear classical laminate theory (CLT), is developed for predicting results with more simple and accurate than the existing finite element analysis programs.

  • PDF

A Study on the Removal of Heavy Metal with Mg-Modified Zeolite

  • Wang, Jei-Pil;Kim, Gyu-Cheol;Go, Min-Seok
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.287-292
    • /
    • 2020
  • The subject of this study is a zeolite generated as a by-product of recycling LAS (lithium-aluminum-silicate) resources, a kind of glass and ceramic produced by induction. The zeolite by-product is modified into Mg-zeolite using Mg as a cation to absorb Pb, a heavy metal generated from water pollution caused by recent industrial wastewater. An ion-exchange method is used to carry out the modification process, from zeolite byproduct to Mg-zeolite, and simultaneously absorb the Pb in the heavy-metal solution (99.032 mg/L). It is found that the sodium zeolite in the raw material residue can be modified to magnesium zeolite by reacting it with a mixture solution at 1 M concentration for 24 h. As a result, it is found that the residual Pb (0.130 mg/L) in the heavy metal solution is shown to be absorbed by 99.86%, with successful formation of a Mg-modified zeolite.

Crystal growth of AlN thin films on 3C-SiC buffer layer (3C-SiC 완충층을 이용한 AIN 박막의 결정성장)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.346-347
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Polycrystalline (poly) 3C-SiC buffer layers using pulsed reactive magnetron sputtering. Characteristics of AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. As a result, highly (002) oriented AlN thin films with almost free residual stress were achieved using 3C-SiC buffer layers. Therefore, AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

  • PDF

Preparation and Characterization of Peptizable Alumina

  • Lee, Chong-Mok;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.329-333
    • /
    • 1985
  • A procedure for the preparation of peptizable pseudoboehmite has been described in detail based upon a process of neutralization of an aqueous aluminum sulfate or chloride solution with aqueous ammonia. In order to obtain peptizable pseudoboehmite products, carefully controlled conditions were required in the whole processes of neutralization, aging, washing, and drying. The optimum conditions experimentally found are the following. The aluminum salt solution is neutralized with aqueous ammonia until the final pH of the solution reaches 10.0 to 10.8 or 9.0 to 9.3 for the sulfate of chloride, respectively. The alumina gel formed is subjected to aging at $80^{\circ}C for about 3 hours and washed with water more than 5 times to reduce the residual sulfate or chloride ion in the final products to less than 4%. The pseudoboehmite gel thus obtained should be dried oven at 80 to $100^{\circ}C for a few to several hours depending on the selected temperatures.

Dense Polycrystalline SiC Fiber Derived from Aluminum-doped Polycarbosilane by One-Pot Synthesis (One-Pot 합성공정으로 만든 Aluminum이 doping된 폴리카보실란으로부터 제조된 치밀한 결정화 탄화규소 섬유)

  • Shin, Dong-Geun;Kong, Eun-Bae;Riu, Doh-Hyung;Kim, Young-Hee;Park, Hong-Sik;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.393-402
    • /
    • 2007
  • Polyaluminocarbosilane was synthesized by direct reaction of polydimethylsilane with aluminum(III)-acetylacetonate in the presence of zeolite catalyst. A fraction of higher molecular weight polycarbosilane was formed due to the binding of aluminium acetylacetonate radicals with the polycarbosilane backbone. Small amount of Si-O-Si bond was observed in the as-prepared polyaluminocarbosilane as the result. Polyaluminocarbosilane fiber was obtained through a melt spinning and was pyrolyzed and sintered into SiC fiber from $1200{\sim}2000^{\circ}C$ under a controlled atmosphere. The nucleation and growth of ${\beta}-SiC$ grains between $1400{\sim}1600^{\circ}C$ are accompanied with nano pores formation and residual carbon generation. Above $1800^{\circ}C$, SiC fiber could be sintered to give a fully crystallized ${\beta}-SiC$ with some ${\alpha}-SiC$.

Safe Decomposition of the Vehicle Waste Battery Module and Development of Separation Process of Cathode Active Material from Aluminum Thin Film (자동차용 폐 리튬 이차전지 모듈의 안정적 해체와 알루미늄 박막으로부터 양극활물질의 분리공정 개발)

  • Kim, Younjung;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.440-445
    • /
    • 2019
  • It has developed a method that can recover efficiently the reproducible resources from the vehicle waste lithium second battery module. Module cell consists of copper thin film, aluminum thin film and diaphragm made with polymer between these thin films. Cell was disassembled completely without any damage in glove box and through several steps. Preferentially, cathode active material was separated from aluminum thin film at heat treatment of 400 ℃. The retrieved cathode active material was then obtained as high purity after calcining at 800 ℃ to remove residual carbon. Based on this study, it was found that rare metals such as Co, Ni, Mn and Li made up of cathode active material could recover above 80% from aluminum thin film.

Synthesis of Aluminum Nitride Powers and Whiskers from a (NH4)[Al(edta)]·2H2O Complex under a Flow of Nitrogen (질소 분위기에서 (NH4)[Al(edta)]·2H2O 착물으로부터 질화알루미늄 분말 및 휘스커의 합성)

  • Jung, Woo-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.272-277
    • /
    • 2002
  • Aluminum nitride (AlN) powders and whiskers were synthesized by a modified carbothermal reduction and nitridation where a ($NH_4)[Al(ethylenediaminetetraacetate)]{\cdot}2H_2O$ complex is used as precursor. The AlN powders were obtained by calcining the complex without mixing any carbon source under a flow of nitrogen in the temperature range 1200∼1500$^{\circ}$C and then burning out the residual carbon. The nitridation process was investigated by $^{27}Al$ magic-angle spinning (MAS) unclear magnetic resonance, infrared spectroscopy and X-ray diffraction. The complex is pyrolyzed, converted to ${\rho}$- and ${\gamma}$- alumina and then nitridated to AlN without ${\gamma}-{\alpha}$ alumina transition. The morphology of ${\gamma}$-alumina, when it was converted to AlN, was retained, strongly indicating that ${\gamma}$-alumina is converted to AlN through solid-state $AlO_xN_y$, not through gaseous intermediates such as aluminum and aluminaum suboxides. AlN whiskers were obtained, when a (0001) sapphire was used as a catalyst.