• Title/Summary/Keyword: Reset circuit

Search Result 63, Processing Time 0.015 seconds

A 12b 10MS/s CMOS Pipelined ADC Using a Reference Scaling Technique (기준 전압 스케일링을 이용한 12비트 10MS/s CMOS 파이프라인 ADC)

  • Ahn, Gil-Cho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.16-23
    • /
    • 2009
  • A 12b 10MS/s pipelined ADC with low DC gain amplifiers is presented. The pipelined ADC using a reference scaling technique is proposed to compensate the gain error in MDACs due to a low DC gain amplifier. To minimize the performance degradation of the ADC due to amplifier offset, the proposed offset trimming circuit is employed m the first-stage MDAC amplifier. Additional reset switches are used in all MDACs to reduce the memory effect caused by the low DC gain amplifier. The measured differential and integral non-linearities of the prototype ADC with 45dB DC gain amplifiers are less than 0.7LSB and 3.1LSB, respectively. The prototype ADC is fabricated in a $0.35{\mu}m$ CMOS process and achieves 62dB SNDR and 72dB SFDR with 2.4V supply and 10MHz sampling frequency while consuming 19mW power.

A Solar Cell based Power Production and Supply Complying with the Active and Sleep Modes of Sensor MAC Protocols (솔라셀 작동 모드와 센서 MAC 프로토콜의 Active 및 Sleep 모드를 고려한 전력 생산 및 공급 제어)

  • Lee, Seung-Yong;Lee, Woong;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.423-432
    • /
    • 2012
  • We design a control circuit that can switch input power between a rechargeable battery and a sensor communication device (mote) depending on the operating state of a solar cell as well as the active and sleep mode of a sensor MAC protocol. A mote that simply combines a solarcell and a rechargeable battery may die if there is not sunlight long. A battery is recharged if sunlight is sufficient and a device is in a sleep mode, and it supplies power if sunlight is low and the mote is in an active mode. A mote can switch its input power between solar cell and battery depending on the output level of a solar cell. During this switching, a mote may lose its state information due to the reset of a microprocessor by the transient power-off. A capacitor is used to cope with this phenomenon and also supplies power to a mote during a sleep mode. Experimental results show that the solar cell based mote operates in a very stable manner against the lack of sunlight long.

A Novel Hybrid Converter with Wide Range of Soft-Switching and No Circulating Current for On-Board Chargers of Electric Vehicles

  • Tran, Van-Long;Tran, Dai-Duong;Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.143-151
    • /
    • 2018
  • In this paper, a novel hybrid configuration combining a phase-shift full-bridge (PSFB) and a half-bridge resonant LLC converter is proposed for the On-Board Charger of Electric Vehicles (EVs). In the proposed converter, the PSFB converter shares the lagging-leg switches with half-bridge resonant converter to achieve the wide ZVS range for the switches and to improve the efficiency. The output voltage is modulated by the effective-duty-cycle of the PSFB converter. The proposed converter employs an active reset circuit composed of an active switch and a diode for the transformer which makes it possible to achieve zero circulating current and the soft switching characteristic of the primary switches and rectifier diodes regardless of the load, thereby making the converter highly efficient and eliminating the reverse recovery problem of the diodes. In addition an optimal power sharing strategy is proposed to meet the specification of the charger and to optimize the efficiency of the converter. The operation principle the proposed converter and design considerations for high efficiency are presented. A 6.6 kW prototype converter is fabricated and tested to evaluate its performance at different conditions. The peak efficiency achieved with the proposed converter is 97.7%.