• Title/Summary/Keyword: Reset algorithm

Search Result 35, Processing Time 0.025 seconds

A Mixed SOC Estimation Algorithm with High Accuracy in Various Driving Patterns of EVs

  • Lim, Dong-Jin;Ahn, Jung-Hoon;Kim, Dong-Hee;Lee, Byoung Kuk
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • In this paper, a mixed algorithm is proposed to overcome the limitations of the conventional algorithms, which cannot be applied in various driving patterns of drivers. The proposed algorithm based on the coulomb counting method is mixed with reset algorithms that consist of the enhanced OCV reset method and the DCIR iterative calculation method. It has many advantages, such as a simple model structure, low computational overload in various profiles, and a low accumulated SOC error through the frequent SOC reset. In addition, the enhanced parameter based on a mathematical analysis of the second-order RC ladder model is calculated and is then applied to all of the methods. The proposed algorithm is verified by experimental results based on a 27-Ah LiPB. It is observed that the SOC RMSE of the proposed algorithm decreases by about 9.16% compared to the coulomb counting method.

The EEV Control of the Multi-type Air-conditioning System by using a Fuzzy Logic Superheat Temperature Setpoint Reset Algorithm (퍼지로직 과열도 재설정 알고리즘을 사용한 멀티형 냉방시스템의 전자팽창밸브 제어)

  • 한도영;이상원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.382-388
    • /
    • 2003
  • Refrigerant flow rates of the multi-type air-conditioning system can be regulated by electronic expansion valves (EEV). The performance of the multi-type air-conditioning system may be improved by lowering the superheat at the compressor suction side. In this study, a superheat temperature setpoint reset algorithm was developed by using fuzzy logics, and a PI algorithm was applied to control the superheat temperature near setpoints. Experimental results showed energy savings and stable operations at a multi-type air-conditioning system. Therefore, the developed setpoint reset algorithm may be effectively used for the EEV superheat temperature control of the multi-type air-conditioning system.

Performance Analysis of the High-side Pressure Reset Algorithm for a $CO_2$ Air-conditioning System ($CO_2$ 에어컨 시스템을 위한 고압재설정알고리즘의 성능분석)

  • Han, Do-Young;Noh, Hee-Jeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.393-398
    • /
    • 2008
  • In order to protect the environment from the refrigerant pollution, the $CO_2$ may be regarded as one of the most attractive alternative refrigerants for an automotive air-conditioning system. Control methods for a $CO_2$ system should be different because of the unique property of a $CO_2$ as a refrigerant. Especially, the high-side pressure of a $CO_2$ system should be controlled for the efficient operation. The high-side pressure algorithm being composed of the pressure setpoint algorithm and the pressure setpoint reset algorithm was developed. The pressure setpoint algorithm, by using a least square method, was developed. The pressure setpoint reset algorithm, by using a fuzzy logic and by using a proportional logic, was also developed and compared. Simulation results showed that a proportional logic was more practical than a fuzzy logic for the pressure setpoint reset algorithm.

  • PDF

SOC Reset Algorithm based Enhanced OCV Estimation for Coulomb Counting Method (향상된 OCV 추정기법을 이용한 전류적산법의 SOC Reset 알고리즘 제안)

  • Jeong, Yong-Min;Cho, Yong-Ki;Ahn, Jung-Hoon;Shin, Seong-Min;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.220-221
    • /
    • 2013
  • 본 논문은 OCV 추정기법을 이용한 전류적산법의 SOC Reset 알고리즘을 제안한다. 제안한 알고리즘은 배터리 상황에 따라 OCV 추정을 위한 휴지시간을 달리 설정한다. 이에 따라 짧은 휴지 시에도 SOC Reset Point를 늘려 전류적산법의 오차를 Reset함으로써 SOC 추정 능력을 향상한다. Li-ion 27 Ah/99.9 Wh 배터리의 충 방전 실험을 통해서 OCV 판별 시간을 도출하여 알고리즘을 구현한다. 전기자동차의 주행 패턴을 모사하여 기존의 전류적산법과 비교 실험을 통해 제안한 알고리즘을 검증한다.

  • PDF

The High-side Pressure Algorithm by using a Least Square Method and a Proportional Logic (최소제곱법과 비례로직을 이용한 시스템고압 알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.16-21
    • /
    • 2008
  • In order to protect the environment from the refrigerant pollution, the $CO_2$ may be regarded as one of the most attractive alternative refrigerants for an automotive air-conditioning system. Control methods for a $CO_2$ system should be different because of $CO_2$'s unique properties as a refrigerant. Especially, the high-side pressure of a $CO_2$ system should be controlled for the effective operation of the system. High-side pressure algorithms, which were composed of the pressure setpoint algorithm and the pressure setpoint reset algorithm, were developed. Pressure setpoint algorithms, by using a neural network and by using a least square method, were developed and compared. Pressure setpoint reset algorithms, by using a fuzzy logic and by using a proportional logic, were also developed and compared. Simulation results showed that a least square method was more useful than a neural network for the pressure setpoint algorithm. And a proportional logic was more practical than a fuzzy logic for the pressure setpoint reset algorithm.

  • PDF

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

Outdoor Reset Control based on Fuzzy Algorithm for Radiant Floor Heating System (퍼지 알고리즘을 기반으로한 바닥복사 난방시스템의 외기보상제어)

  • Choi, Jong-Yo;Baek, Jae-Ho;Kim, Eun-Tai;Lee, Hee-Jin;Park, Mig-Non
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1073-1074
    • /
    • 2008
  • This paper presents outdoor reset control based on fuzzy algorithm for radiant floor heating system. We construct fuzzy system under indoor temperature and outdoor temperature. Simulation is based on TRNSYS with MATLAB. MATLAB is calculating and decide heat source using fuzzy system. Energy efficiency of Fuzzy algorithm is analyzed in term of indoor by TRNSYS System.

  • PDF

Automatic Recovery and Reset Algorithms for System Controller Errors

  • Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.89-96
    • /
    • 2020
  • Solar lamp systems may not operate normally in the event of some system or controller failure due to internal or external factors, in which case secondary problems occur, which may cost the system recovery. Thus, when these errors occur, a technology is needed to recover to the state it was in before the failure occurred and to enable re-execution. This paper designs and implements a system that can recover the state of the system to the state prior to the time of the error by using the Watchdog Timer within the controller if a software error has occurred inside the system, and it also proposes a technology to reset and re-execution the system through a separate reset circuit in the event of hardware failure. The proposed system provides stable operation, maintenance cost reduction and reliability of the solar lamp system by enabling the system to operate semi-permanently without external support by utilizing the automatic recovery and automatic reset function for errors that occur in the operation of the solar lamp system. In addition, it can be applied to maintain the system's constancy by utilizing the self-operation, diagnosis and recovery functions required in various high reliability applications.