• Title/Summary/Keyword: Reservoir water quality

Search Result 696, Processing Time 0.029 seconds

Effects of Domestic Freshwater Shellfishes on the Water Quality in the Eutrophic Agricultral Reservoir (부영양 저수지에서 국내 담수산 패류가 수질에 미치는 영향)

  • Hwang, Soon-Jin;Park, Ku-Sung;Baik, Soon-Ki;Kim, Baik-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.148-155
    • /
    • 2010
  • Water quality and plankton community dynamics after the introduction of two domestic freshwater shellfishes (Unio douglasiae Griffith & Pidgeon and Cipangoplaudina chinese malleata Reeve), were monitored daily in enclosures, which constructed in the tidal zone of eutrophic agricultural reservoir (Shingu reservoir, Korea) for one week between July 31 and August 6, 2007. This biomanipulation study to improve the water quality of eutrophic lake, comprised eight enclosures (duplicate x four kinds), enclosure had no mussels (Control), stocked only with U. douglasiae at density of 60 individuals (UD), stocked only with C. chinese malleata at density of 60 individuals (CCM), and combined-stocked with 30 individuals of UD and 30 individuals of CCM (MIX), respectively. Our results clearly indicate that UD strongly decreased the concentration of chlorophyll-a and increased the water transparency, whereas CCM and MIX (included CCM) did increase algal density or decrease transparency, due perhaps to the disturbance of C. chinese malleata. Therefore, the field application of shellfish to enhance the water quality of eutrophic agricultural reservoir, should consider the grazing characteristics of biological control agents, especially active moving animals like snail.

Water Quality Improvement Plans based on the Analysis of Pollutant Discharge Characteristics and Water Quality Modelling of Seokmun Reservoir Watershed (석문호 유역 오염물질 배출특성 분석 및 수질모델링에 기초한 수질개선방안 연구)

  • Choi, Moojin;Jung, Woohyeuk;Choi, Jaehun;Kim, Youngil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.581-590
    • /
    • 2017
  • For effective improvement of water quality in Seokmun reservoir, this study implemented various analyses including the tributary water quality and flowrate monitoring, contamination of sediment, investigation of pollution source, selection of priority management target tributary by stream grouping method. The COD concentration of the majority of tributaries in Seokmun reservoir watershed was relatively higher than BOD concentration. The concentration of water pollutants regardless of water quality parameters in Yeokcheon, Dangjincheon, Sigokcheon, Baekseokcheon, small stream in Jinkwanri and Janghangri were higher than the other tributaries. The pollution sources in the Seokmun reservoir watershed were mostly distributed in the population, livestock, and industry. The pollutants, which located in Yeokcheon, Dangjincheon, Baekseokcheon, and small stream in Janghangri selected as priority management target tributary, should be preferentially reduced for improving the water quality in Seokmun reservoir. As the evaluation results of water quality in Seokmun reservoir for the effect of water quality improvement according to various scenarios using water quality model, it was found that the water quality in Seokmun reservoir due to the construction of a wastewater treatment plant for management of pollutants in the watershed would be satisfied the class V of water environment standard in reservoir.

Investigating the Causes and Control Measures for Precipitated Suspended Solids in the Underground Reservoir Tank in an Apartment (공동주택 지하저수조 내 침전된 부유성 고형물의 발생원인 및 제어방안)

  • JunYoung Jang;JooWon Kim;KiPal Kim;HyunSang Shin;ByungRan Lim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.153-161
    • /
    • 2023
  • The reservoir tank in an apartment is crucial for maintaining the quality of drinking water after it has undergone treatment. Investigating the water quality and potential contaminants in the reservoir tank is essential to ensure the safety of the drinking water. This study examined the water quality and precipitated suspended solids that accumulate at the bottom of the reservoir tanks in four apartments located in Gyeonggi province. As a result of the water quality investigation, turbidity increased proportionally to the distance from the water treatment plant (WTP) to the household. Heavy metals were also detected in the reservoir tank inlet but not in the water supplied from the WTP. The precipitated suspended solids (SS) in the reservoir tank contain high levels of heavy metals and total organic carbon (TOC). The precipitated SS mainly consists of Al, Mn, and Fe, which are expected to be a combination with turbidity-inducing substances. The X-ray diffraction (XRD) analysis revealed the presence of γ-FeO(OH), MnO2, and β-Fe2O3 in the SS. Additionally, F-EEM analysis indicates that the dissolved organic matter in the SS is mainly derived from a natural water source and microorganism activities, including metal-oxidizing bacteria and biofilms that can absorb metal ions. Based on these findings, several countermeasures can be taken to prevent the inflow of SS into the household, including regularly cleaning the reservoir tank, replacing or cleaning old pipes in the water supply system, and implementing monitoring and filtering systems to manage the SS.

Estimation of WTP for Water Quality Improvements in Paldang Reservoir Using Contingent Valuation (팔당호 수질개선에 대한 소비자 지불의사액 추정)

  • Kim, Bong-Koo;Cho, Yongsung;Kwak, Jae Eun
    • Environmental and Resource Economics Review
    • /
    • v.10 no.3
    • /
    • pp.433-459
    • /
    • 2001
  • The water quality of Paldang reservoir now grades the third class water based on COD criterion, meaning that it is no longer suitable for drinking. This study attempted to estimate the economic value of water quality improvement in Paldang reservoir using CVM. The survey used payment card format to measure the willingness to pay of the questionnaire respondents for the improvement of water quality and also factors that affect the WTP. The survey showed that men rather than women, those had higher income and paid more water supply charges, those who lived in the area for a shorter period of time, those who do not use city water for drinking, had willingness to pay more. The WTP was estimated 4,952 to 5,497 won on a monthly average. The economic value of the improvement of the water quality of Paldang reservoir was estimated between 344.2~382.1 billion won on an annual basis.

  • PDF

Prediction of Water Quality in Haenam Estuary Reservoir Using Multiple Box Model (I) -Development and Application of Water Quality Subroutines- (Multiple Box 수질모형에 의한 해남호 수질예측 (I) - 수질부 모형의 개발과 적용 -)

  • 신승수;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.116-129
    • /
    • 1990
  • A rational management of water resources in estuary reservoirs necessiates the prediction of water quality. In this study, a multiple box model for the water quality prediction was developed as a tool for the purpose of examining an adequate way to improve and maintain the water quality. Some submodels that are suitable for simulating the mixing behavior of pollutant materials in a lake were considered in this model. The model was appiled for predicting water qualities of Haenam Esturay Reservoir. The result from this study can be summarized as follows : 1.A water quality simulation model that can predict the 10-day mean value of water qualities was developed by adding some submodels that simulate the concentrations of chlorophyll-a, BOD, T-P and T-N to the existing Multiple Box Model representing the mixing and circulating of materials by the hydarulic action. 2.As input data for the model developed, the climatic data including precipitation, solar radiation, temperature, cloudness, wind speed and relative humidity, and the water buget records including the pumping discharge and the releasing discharge by drainage gate were ollected. The hydrologic data for the inflow discharge from the watershed was obtained by simulation with the aid of USDAUL-74/SNUA watershed model. Also the water quality data were measured at streams and the reservoir. 3.As a result of calibration and verification test by using four comonents of water quality such as Chlorophyll-a, BOD, T-P and T-N, it was found that the correlation coefficeints between the observed and the simulated water qualities showed greater than 0.6, therefore the capability of the model to simulate the water quality was proved. 4.The result based on the model application showed that the water quality of the Haenam Estuary Reservoir varies seasonally with the harmonic trend, however the water quality is good in winter and get worse in summer. Also it may be concluded that the current grarde of water quality in the Heanam Esutary Reservoir is ranked as grade 4 suitable only for the agricultutal use.

  • PDF

Cluster and Factor Analyses Using Water Quality Data in the Sapkyo Reservoir Watershed (삽교호유역의 수질자료를 이용한 군집분석 및 요인분석)

  • Im, Chang-Su;Sin, Jae-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • The monthly water quality data measured at 19 stations located in the Sapkyo reservoir watershed were clustered into 2 to 7 clusters and factor analysis was conducted to characterize the water quality, using the information obtained from cluster analysis. The result of cluster analysis shows that Sapkyo reservoir and each stream (Sapkyo stream, Muhan stream and Kokkyo stream) in Sapkyo reservoir watershed hove their own water quality characteristics. The result of water quality analysis indicates that the concentration of suspended solids from Sapkyo reservoir is much higher than those of other streams, and which is probably because of increment of phytoplankton biomass with rich nutrient flowing Into Sapkyo reservoir from the upper stream of watershed. Furthermore, the concentrations of biochemical oxygen demand and chemical oxygen demand were 3.5 to 4.8 times and 1.7 to 2.5 times those of other streams, respectively. The overall water quality of Sapkyo reservoir watershed was considered to exceed eutrophic condition. Based on factor analysis, the water quality characteristics of Sapkyo stream and Muhan stream were closely related with farm land and residence. The water quality of Kokkyo stream was influenced by superabundant organic matter flowing from Chonan city and district wastewater treatment plant located in the upper stream of Kokkyo stream. The water quality factor influencing Sapkyo reservoir was closely related with water quality factors of other three streams.

The Analysis of Water Quality and Suspended Solids Effects against Transparency of Major Artificial Reservoirs in Korea. (우리나라 주요 인공호의 투명도에 대한 수질 및 수중 부유물 영향 분석)

  • Kong, Keon-Hwa;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.221-231
    • /
    • 2009
  • This study was carried out to comparatively identify characteristics of turbid water influence in Imha Reservoir, Soyang Reservoir, and Daecheong Reservoir in Korea. We used 3 years dataset from 2002 to 2004 and analyzed seasonal water quality characteristics, particular parameters in association with turbidity, and light transparency to figure out the trends. All parameters to be used in the study were total phosphate (TP), total nitrogen (TN), chlorophyll-${\alpha}$ (Chl), suspended solids (SS), Secchi depth (SD), conductivity, and verticallight extinction coefficienct($K_d$), euphotic zone ($Z_{eu}$), and critical depth ($Z_p$). All parameters depend on season and watershed. Suspended solids from Soyang Reservoir were usually caused by TP, mainly related to living wastes and agricultures in upper stream. Daecheong Reservoir was influenced by organic matters related to large phytoplankton biomass in summer and inorganic suspended solids by nutrients in the winter. However, in case of Imha Reservoir, turbid water, consisted in silt and clay through heavy precipitation remained in the waterbody to decrease water transparency along with TP and caused the light limitation in winter. Overall results suggest that it was necessary to establish various management programs because the reasons occurring turbidity were varied according to the reservoir circumstances.

Evaluation of EFDC for the Simulations of Water Quality in Saemangeum Reservoir (새만금호 수질예측 모의를 위한 EFDC 모형의 평가)

  • Jeon, Ji Hye;Chung, Se Woong;Park, Hyung Seok;Jang, Jeong Ryeol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.445-460
    • /
    • 2011
  • The objective of this study was to construct and assess the applicability of the EFDC model for Saemangeum Reservoir as a 3D hydrodynamic and water quality modeling tool that is necessary for the effective management of water quality and establishment of conservation measures. The model grids for both reservoir system only and reservoir-ocean system were created using the most recent survey data to compare the effects of different downstream boundary conditions. The model was applied for the simulations of temperature, salinity, water quality variables including chemical oxygen demand (COD), chlorophyll-a (Chl-a), phosphorus and nitrogen species and algal biomass, and validated using the field data obtained in 2008. Although the model reasonably represented the temporal and spatial variations of the state variables in the reservoir with limited boundary forcing data, the salinity level was underestimated in the middle and upstream of the reservoir when the flow data were used at downstream boundaries; Sinsi and Garyuk Gates. In turn, the error caused to increase the bias of water quality simulations, and inaccurate simulation of density flow regime of river inflow during flood events. It is likely because of the loss of momentum of sea water intrusion at downstream boundaries. In contrast to flow boundary conditions, the mixing between sea water and freshwater was well reproduced when open water boundary condition was applied. Thus, it is required to improve the downstream boundary conditions that can accommodate the real operations of the sluice gates.

Flow regimes and water quality impact of turbidity current into a stratified reservoir (성층 저수지로 유입하는 탁류의 유동특성과 영향에 관한 연구)

  • Chung, Se-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.269-272
    • /
    • 2002
  • Turbidity currents, often develop after heavy storm events, deliver various non-point pollutants and tend to lead eutrophication, depressed dissolved oxygen, and sedimentation in reservoirs. Field observations were performed to investigate the flow regimes of turbidity currents and their impact on reservoir water quality in Daecheong Reservoir. A 2D laterally-averaged hydrodynamic and water quality model was applied to simulate the temporal and spatial distributions of turbidity in the reservoir, and evaluated by comparing with the field data.

  • PDF

Longitudinal and Vertical Variations of Long-term Water Quality along with Annual Patterns in Daecheong Reservoir

  • Lee, Sang-Jae;Shin, Jae-Ki;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.199-211
    • /
    • 2010
  • The objectives for this study were to evaluate spatial and temporal characteristics of water quality, based on long-term water quality monitoring data during 1993~2008. We found that physico-chemical and ecological conditions in the Daecheong Reservoir (DR) were modified by the construction of upper dam (i.e., Yongdam Reservoir). total phosphorus (TP), Secchi depth (SD), and chlorophyll-a (CHL) in the DR showed significant longitudinal decreases along the headwater-to-the downlake, indicating a large spatial variation, and this gradient was more intensified during the high-flow season (monsoon). Nutrient-rich water containing high nitrogen and phosphorus in the monsoon season (July~August) passed through the reservoir as a density current in the metalimnetic depth, and also high suspended solids increased in the metalimnetic depth, especially during the monsoon. According to the deviation analysis of Trophic State Index (TSI), >50% of TSI (CHL)-TSI (SD) and TSI (CHL)-TSI (TP) values were negatives, so that inorganic suspended solids (non-votatile solids) influenced the underwater light regime against phytoplankton growth. Also, ratios of CHL:TP after the dam construction evidently increased, compared to the values before the upper dam constructions, indicating a greater yield of phytoplankton in the unit phosphorus. Overall data showed that ecological and functional changes in Daecheong Reservoir occurred after the construction of upper dam (Yongdam Reservoir).