• Title/Summary/Keyword: Reservoir system

Search Result 951, Processing Time 0.029 seconds

Development of a Decision Support System for Reservoir Sizing

  • Kim, Seong-Joon;Noh, Jae-Kyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.17-23
    • /
    • 2000
  • A decision support system for determining reservoir capacity, named as KORESIDSS (KOwaco's REservoir SIzing Decision Support System), was developed. The system is composed of three subsystems; a database/information subsystem, a model subsystem, and an output subsystem. This system is operated using MS-Windows with a GUI (Graphic User Interface) system developed using Visual Basic 5.0. As a continuous runoff model, the DAWAST model (DAily WAtershed STreamflow model) developed by Noh(1991) was and its analysis module was developed. This system was applied to a newly-planned dam, the Cheongyan Dam, Which will be located in Cheongyang-Gun, Chungcheongnam-Do and it was proved to be applicable in determining reservoir storage.

  • PDF

The Monthly Water Supply Reliability Indexes in the Parallel Reservoir System

  • Park, Ki-Bum;Kim, Sung-Won;Lee, Yeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1612-1615
    • /
    • 2009
  • Water supply reliability indexes (WSRI) is estimated for assessment of water supply capacity in the downstream for parallel reservoir system in Nakdong River, South Korea, using allocation rule (AR) according to the water supply capacity of each reservoir and the characteristic of parallel reservoir system. The result of the analyzing parallel reservoir system for Andong and Imha reservoir in Nakdong River does not include evidences available enough to decide whether the results of water supply analysis are excellent in the current reliability evaluation or not. However, AR (C) shows a good result in the water supply capacity for each reservoir based on the connected operation system and the total water supply capacity at the control point of downstream by the average water supply capacity and possible range of water supply capacity suggested by this study. The average water supply capacity is analyzed by the reliability of monthly average water supply capacity. Furthermore, the possible range of water supply capacity is estimated by the standard deviation when water deficit occurs. Therefore, AR (C) is useful to establish and estimate the planning water supply capacity according to the monthly water supply condition and the possible range of water supply capacity when the water supply capacity deficit occurs, South Korea.

  • PDF

A Linear Reservoir Model with Kslman Filter in River Basin (Kalman Filter 이론에 의한 하천유역의 선형저수지 모델)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.349-356
    • /
    • 1994
  • The purpose of this study is to develop a linear reservoir model with Kalman filter using Kalman filter theory which removes a physical uncertainty of :ainfall-runoff process. A linear reservoir model, which is the basic model of Kalman filter, is used to calculate runoff from rainfall in river basin. A linear reservoir model with Kalman filter is composed of a state-space model using a system model and a observation model. The state-vector of system model in linear. The average value of the ordinate of IUH for a linear reservoir model with Kalman filter is used as the initial value of state-vector. A .linear reservoir model with Kalman filter shows better results than those by linear reserevoir model, and decreases a physical uncertainty of rainfall-runoff process in river basin.

  • PDF

Free vibration analysis of gravity dam-reservoir system utilizing 21 node-33 Gauss point triangular elements

  • Ziaolhagh, Seyed Hamid;Goudarzi, Meghdad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.59-86
    • /
    • 2016
  • This paper deals with the free vibration analysis of a dynamical coupled system: flexible gravity dam- compressible rectangular reservoir. The finite element method is used to compute the natural frequencies and modal shapes of the system. Firstly, the reservoir and subsequently the dam is modeled by classical 8-node elements and the natural frequencies plus modal shapes are calculated. Afterwards, a new 21-node element is introduced and the same procedure is conducted in which an efficient method is employed to carry out the integration operations. Finally, the coupled dam-reservoir system is modeled by solely one 21-node element and the free vibration of dam-reservoir interaction system is investigated. As an important result, it is clearly concluded that the one high-order element treats more precisely than the eight-node elements, since the first one utilizes fifth-degree polynomials to construct the shape functions and the second implements polynomials of degree two.

Optimal Operation of Pumping System Connected with Reservoir Systems (저수지 시스템과 연계된 펌핑 시스템의 최적 운영)

  • Lee, Gwang-Man;Lee, U-Seok;Yu, Yang-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.107-118
    • /
    • 1997
  • The Upper Fenhe Reservoir System studied by KOWACO to supply water to Taiyuan City, capital of Shanxi Province in China, is a very complicated one. Many reservoirs will be connected serially and it will be operated as a multi-purpose and multi-criteria system because several objectives and appraisal functions are taken into account regarding system operation. For reservoirs in the system, the critical system operation objectives are to minimize water shortage and reservoir sediment. Furthermore the reservoir system will be jointed with a large-scale pumping system, namely Yellow River Diversion Project. The water development cost in the Yellow River Diversion Project is much higher than that of reservoir system, and around the year 2020 the diversion volume will be twice of the surface water available in the Upper Fenhe Basin. In this study, an optimization technique for connecting the system of reservoirs and pumping station was developed to solve a conjunctive low River Diversion Project. The developed scheme includes a suggestion on the combining methodology of real reservoir system and pumping system using imaginary reservoir concept for the Yellow River Diversion Project, and practical examples to the minimization problem of the Yellow River diversion satisfying other reservoir operation objectives.

  • PDF

A Stochastic Dynamic Programming Model to Derive Monthly Operating Policy of a Multi-Reservoir System (댐 군 월별 운영 정책의 도출을 위한 추계적 동적 계획 모형)

  • Lim, Dong-Gyu;Kim, Jae-Hee;Kim, Sheung-Kown
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • The goal of the multi-reservoir operation planning is to provide an optimal release plan that maximize the reservoir storage and hydropower generation while minimizing the spillages. However, the reservoir operation is difficult due to the uncertainty associated with inflows. In order to consider the uncertain inflows in the reservoir operating problem, we present a Stochastic Dynamic Programming (SDP) model based on the markov decision process (MDP). The objective of the model is to maximize the expected value of the system performance that is the weighted sum of all expected objective values. With the SDP model, multi-reservoir operating rule can be derived, and it also generates the steady state probabilities of reservoir storage and inflow as output. We applied the model to the Geum-river basin in Korea and could generate a multi-reservoir monthly operating plan that can consider the uncertainty of inflow.

Design of convection current circulation system in reservoir using CFD simulation (CFD모사를 이용한 저수지 물순환장치 유동 설계)

  • Lee, Yosang
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.133-142
    • /
    • 2012
  • Convection Current Circulation System(CCCS) in stratified reservoir controls development of anaerobic condition and algal bloom during summer. In order to increase the CCCS effectiveness, we analyze diverse design parameters to make optimize the flow pattern in reservoir. In this study, we interpret the internal flow with installation and operation condition of CCCS based on CFD in reservoir. Design variables of CCCS is reservoir depth, stratification strength, distance of between CCCS and so on. Since reservoir depth and stratification strength in variables is depending on natural phenomenon, we evaluated current circulation effect by distance of CCCS and proposed the optimal design condition using CFD simulation. Flow and diffusion changes in water body was assessed by temperature and dye test. Changes in water floor temperature at 40m intervals was slowly descending over 37 hours. Dye diffusion simulation at 60m intervals, the radius of the spread between two devices were overlapped after 12 hours.

Safety Evaluations of Reservoir Embankment by Instrument System (계측시스템에 의한 저수지 제체의 안정성 평가)

  • Kim, Mi-Hyun;Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.33-43
    • /
    • 2009
  • This study analyzed data on the pore water pressure, the ground water level, the horizontal displacement and the resistivity monitoring from instrument system, which is established to evaluate the safety in reservoirs. The pore water pressure in the embankment ranged from $0.035{\sim}1.116kg/cm^2$. The seepage that piping showed, as well as the leakage from the reservoirs are acceptable for the safety management of the reservoir. The maximum horizontal displacement and direction analyzed from the measured inclinometer data gives us very effective information to evaluate the safety in reservoirs. The resistivity monitoring technique, which is obtained on the reservoir crest, is an efficient tool to detect leakage zone. The safety index (SI) was predicted by the resistivity monitoring, and was evaluated to have a safety level of 0.8-1.0 at all reservoirs. Safety evaluations of reservoir through instrument systems are effective when studying the embankment, when the results of the instrument system have been analyzed compositively.

Dynamic analysis of Pine Flat dam-reservoir system utilizing Hagstrom-Warburton truncation boundary condition

  • Solmaz Dehghanmarvasty;Vahid Lotfi
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.365-389
    • /
    • 2023
  • Dynamic analysis of a typical concrete gravity dam-reservoir system is formulated by FE-(FE-TE) approach (i.e., Finite Element-(Finite Element-Truncation Element)). In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the H-W (i.e., Hagstrom-Warburton) high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially reviewed which was originally proposed in a previous study. Thereafter, the response of Pine Flat dam-reservoir system is studied due to horizontal and vertical ground motions for two types of reservoir bottom conditions of full reflective and absorptive. It should be emphasized that study is carried out under high order of H-W condition applied on the truncation boundary. The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by FE-(FE-HE) approach (referred to as exact method). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods (농업용 저수지 공급량과 수요량의 확률분포 및 신뢰성 해석 기법을 활용한 물 공급 취약성 평가)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.