• Title/Summary/Keyword: Reservoir operation method

Search Result 117, Processing Time 0.026 seconds

Determination of operating offline detention reservoir considering system resilience (시스템 탄력성을 고려한 빗물저류조 운영수위 결정)

  • Lee, Eui Hoon;Lee, Yong Sik;Jung, Donghwi;Joo, Jin Gul;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.403-411
    • /
    • 2016
  • Recently, the number of occurrences of inundation and the severity of flood damage has increased rapidly as the frequency of localized heavy rainfall and the ratio of impervious area increased in urban areas. Most local governments focus on employing structural measures (e.g., the construction of detention reservoirs/pump stations, rehabilitation of drainage and sewer pipes) to prevent urban inundation. On the other hand, the effectiveness of implementing such structural measures is being dimished because there are already many inundation prevention facilities. The limitation of structural measures can be overcoming by employing non-structure measures, such as flood alerts and the operation of drainage facilities. This study suggests the pump operation rule (i.e., suggesting pump stop level) for a new detention reservoir operating method, which triggers the operation of a pump based on the water level at the monitoring node in urban drainage system. In the new reservoir operation, a total of 48 rainfall events are generated by the Huff distribution for determining the proper pump stop level. First, the generated rainfall events are distributed as frequencies, quartiles, and durations. The averaged system resilience value was determined to range from 1.2 m to 1.5 m is based on the rainfall-runoff simulation with rainfall generated by the Huff distribution. In this range, 1.2 m was identified considering the safety factor of 1.25 by the Standard on sewer facilities in 2011.

Experiment Study on Field Applicability of Siphon as a Intake Facility of Agricultural Reservoir for Disaster Prevention (재해대비 농업용저수지 취수시설로서 사이폰의 현장적용성에 관한 실험적 연구)

  • Yang, Young Jin;Lee, Tae Ho;Oh, Sue Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • Most of the intake facilities of small agricultural reservoirs are conduits and they are regarded as serious defects due to the structural weakness that penetrates the body of the dam, and countermeasures are needed. This study suggests the application method of siphon type water intake facility by hydraulic model test and physical scale model test of siphon type water intake facility which has high safety and easy maintenance. Experimental results show that sufficient flow rate can be secured for the purpose of intaking water according to the differential head between the reservoir and the discharge part, and the flow rate can be controlled by the valve. The negative pressure was -31.5 kPa, and vibration and noise did not occur during the operation of the siphon. The maximum flow velocity in the discharge outlet was 1.11 m/s which meets the criterion for irrigation canals. Therefore, scour risk would be very low. As a result of the inflow distribution experiment, even if the inflow part is separated by only about 0.8 m, the flow velocity is remarkably decreased, so that the clogging by debris would not appear. When the pump was operated only once for the first time and the inside of the siphon was filled with water, continuous operation was possible by only valve operation. The results of this study are expected to be used for the design guidelines of the water intake facilities and improve safety and maintenance convenience of agricultural reservoirs.

Reservoir Management in Flood Period with Chance Constrained LP (위험도제약(危險度制約) 선형계획법(線形計劃法)에 위한 홍수기(洪水期) 저수지운영(貯水池運營))

  • Lee, Kil Seong;Kang, Bu Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.139-151
    • /
    • 1992
  • A reservoir operation model was established under the varying restricted water level(r.w.l.) subject to the inflow distributions in flood period. The optimization model consists of 2 sub-models. One model minimizes deviations of releases from the expected release and the other minimizes capacity requirement for flood control. In order to make deterministic equivalents, the inflow distribution of reservoir is assumed to be 2-parameter Lognormal, and its parameters are estimated by the maximum likelihood method. The model is applied to joint operation of Soyang and Chungju dam. The results show that Soyang was designed for larger flood event than that for Chungju. The operation under the varying r.w.l. turns out to be more effective than one under the uniform r.w.l. Such effect is more obvious at Chungju compared with Soyang. Release pattern shows diminishing and delaying effect in a period of high inflows and larger discharges than actual in a period of low inflows.

  • PDF

Design of the Sequentially Operated-Hydraulic Cylinders Type Sluice Gate Minimizing the Operating Force (작동력을 최소화시키는 순차작동-유압실린더식 수문의 설계)

  • Lee, Seong-Rae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.893-898
    • /
    • 2004
  • The hydraulic cylinder is used for actuating a sluice gate which controls the volume of water in the reservoir. Generally, the one cylinder type is used to operate the sluice gate. In order to reduce the required cylinder force to operate the sluice gate significantly, the sequentially operated-hydraulic cylinders type is designed and the optimal locating points of cylinders are searched using the complex method that is one kind of constrained direct search method.

  • PDF

Characteristics of Bioaerosol Generation of Household Humidifiers by User Practices (가정용 가습기의 사용자 습관에 따른 실내공기 중 바이오에어로졸의 발생특성)

  • Kim, Ik-Hyeon;Kim, Ki Youn;Kim, Daekeun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.503-509
    • /
    • 2012
  • Objectives: This study was performed in order to evaluate the generation characteristics of airborne bacteria and fungi while operating a household humidifier, in consideration of user habits. Methods: Microbial samples were collected in a closed chamber with a total volume of 2.76 $m^3$, in which a humidifier was operated according to experimental strategies. A cultivation method based on the viable counts of mesophilic heterotrophic bacteria and fungi was performed. Experimental strategies were divided into three classes: the type of water in the water reservoir (tap water, cooled boiled water); the frequency of filling the reservoir (refill every day, no refill); and the sterilization method (sterilization function mode, humidifier disinfectants). Results: Significant increases in the concentration of airborne bacteria were observed while the humidifier was in operation. The concentration had increased to 2,407 $CFU/m^3$ by 120 hours when tap water filled the reservoir without any application of sterilization, while for cooled boiled water, it was merely 393 $CFU/m^3$ at a similar time point. Usages of disinfectant in the water tank were more effective in decreasing bioaerosol generation compared to sterilization function mode operation. Generation characteristics of airborne fungi were similar to those of bacteria, but the levels were not significant in all experiments. Calculated exposure factor can be used as an indicator to compare biorisk exposure. Conclusion: This study identified the potential for bioaerosol generation in indoor environments while operating a household humidifier. User practices were critical in the generation of bioaerosol, or more specifically, airborne bacteria. Proper usage of a humidifier ensures that any biorisks resulting from generated bioaerosol can be prevented.

A Development of Intelligent Pumping Station Operation System Using Deep Reinforcement Learning (심층 강화학습을 이용한 지능형 빗물펌프장 운영 시스템 개발)

  • Kang, Seung-Ho;Park, Jung-Hyun;Joo, Jin-Gul
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The rainwater pumping station located near a river prevents river overflow and flood damages by operating several pumps according to the appropriate rules against the reservoir. At the present time, almost all of rainwater pumping stations employ pumping policies based on the simple rules depending only on the water level of reservoir. The ongoing climate change caused by global warming makes it increasingly difficult to predict the amount of rainfall. Therefore, it is difficult to cope with changes in the water level of reservoirs through the simple pumping policy. In this paper, we propose a pump operating method based on deep reinforcement learning which has the ability to select the appropriate number of operating pumps to keep the reservoir to the proper water level using the information of the amount of rainfall, the water volume and current water level of the reservoir. In order to evaluate the performance of the proposed method, the simulations are performed using Storm Water Management Model(SWMM), a dynamic rainfall-runoff-routing simulation model, and the performance of the method is compared with that of a pumping policy being in use in the field.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part II: Simulations of Chlorophyll a and Total Phosphorus Dynamics

  • Ram, Bhattarai Prasid;Kim, Yoon-Hee;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.472-484
    • /
    • 2008
  • The calibrated Andong Reservoir hydro-dynamic module (PART I) of the 2-dimensional hydrodynamic and water quality model, CE-QUAL-W2 [v3.2], was applied to examine the dynamics of total phosphorus, and chlorophyll $\alpha$ concentration within Andong Reservoir. The modeling effort was supported with the data collected in the field for a five year period. In general, the model achieved a good accuracy throughout the calibration period for both chlorophyll ${\alpha}$ and total phosphorus concentration. The greatest deviation in algal concentration occurred on $10^{th}$ October, starting at the layer just beneath the surface layer and extending up to the depth of 35 m. This deviation is principally attributed to the effect of temperature on the algal growth rate. Also, on the same date, the model over-predicts hypolimnion and epilimnion total phosphorus concentration but under-predicts the high concentrated plume in the metalimnion. The large amount of upwelling of finer suspended solid particles, and re-suspension of the sediments laden with phosphorus, are thought to have caused high concentration in the epilimnion and hypolimnion, respectively. Nevertheless, the model well reproduced the seasonal dynamics of both chlorophyll a and total phosphorus concentration. Also, the model tracked the interflow of high phosphorus concentration plume brought by the turbid discharge during the Asian summer monsoon season. Two different hypothetical discharge scenarios (discharge from epilimnetic, and hypolimnetic layers) were analyzed to understand the response of total phosphorus interflow plume on the basis of differential discharge gate location. The simulated results showed that the hypolimnetic discharge gate operation ($103{\sim}113\;m$) was the most effective reservoir structural control method in quickly discharging the total phosphorus plume (decrease of in-reservoir concentration by 219% than present level).

Evaluation of Reservoir Drought Response Capability Considering Precipitation of Non-irrigation Period using RCP Scenario (RCP 시나리오에 따른 비관개기 누적강수량을 고려한 둑높이기 저수지의 미래 가뭄대응능력 평가)

  • Bang, JeHong;Lee, Sang-Hyun;Choi, Jin-Yong;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.31-43
    • /
    • 2017
  • Recent studies about irrigation water use have focused on agricultural reservoir operation in irrigation period. At the same time, it is significant to store water resource in reservoir during non-irrigation period in order to secure sufficient water in early growing season. In this study, Representative Concentration Pathways (RCP) 4.5, 8.5 scenarios with the Global Climate Model (GCM) of The Second Generation Earth System Model (CanESM2) were downscaled with bias correlation method. Cumulative precipitation during non-irrigation season, October to March, was analyzed. Interaction between cumulative precipitation and carry-over storage was analyzed with linear regression model for ten study reservoirs. Using the regression model, reservoir drought response ability was evaluated with expression of excess and deficiency. The results showed that future droughts will be more severe than past droughts. Especially in case of non-exceedance probability of 10%, drought in southern region seemed to be serious. Nine study reservoirs showed deficiency range from 10% to 55%, which turned out to be vulnerable for future drought. Only Jang-Chan reservoir was secure for early growing season in spite of drought with deficiency of 8% and -2%. The results of this study represents current agricultural reservoirs have vulnerability for the upcoming drought.

Performance Evaluation of Water Supply for a Multi-purpose Dam by Deficit-Supply Operation (물 부족량 공급 운영 방식에 의한 다목적댐 물 공급의 안정성 평가)

  • Lee, Dong Ryul;Moon, Jang Won;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.195-206
    • /
    • 2014
  • In this study, a performance evaluation method of water supply for a multi-purpose dam based on deficitsupply method and reservoir storage is presented. The method is applied to 16 multi-purpose dams and water supply performance is evaluated. As a result, 6 dams (Soyanggang, Chungju, Hoengseong, Andong, Imha, and Hapcheon dam) have highest performance and 2 dams (Sumjingang and Buan dam) have relatively low performance. Particularly, Buan dam is the most vulnerable in the analysis results of reliability, resiliency, and vulnerability. Therefore, measures to improve the performance of water supply are needed in Buan multi-purpose dam.

Experimental Study on the Rapid Cooling System by Refrigerant Storage Method (냉매 저장방식에 의한 쾌속 냉각장치에 대한 실험적 연구)

  • 장기태;고준석;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • In the present study, low-temperature low-pressure refrigerant storage method is proposed to achieve higher cooling capacity during a short period of time than that of a compressor in steady operation. Experimental apparatus was designed and set up to analyze the performance of the new-conceptual cooling system. Two reservoirs for sequential storage of refrigerant were used in the cooling system. Several on/off solenoid valves were installed for control of refrigerant flow. From the experimental results, the initial rapid cooling by low temperature low-pressure refrigerant storage method was ascertained for successful operation. This rapid cooling methodology shall be useful for other low-capacity refrigeration system.