• Title/Summary/Keyword: Reservoir embankment

Search Result 93, Processing Time 0.027 seconds

Hydrodynamic Modeling of Saemangeum Reservoir and Watershed using HSPF and EFDC (HSPF-EFDC를 이용한 새만금호와 유역의 수리 변화 모의)

  • Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Jung-Hoon;Jung, Kwang Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Saemangeum lake is an artificial lake created by reclamation works and an estuary embankment since 2006. The sea water flows into the lake by the operation of two sluice gates, and the freshwater enters into the lake by the upper streams. For the reflection of hydrology and hydrodynamics effects in Saemangeum area, a hydrodynamics model was developed by connecting Hydrological Simulation Program with Fortran (HSPF) and Environmental Fluid Dynamic Code (EFDC). The HSPF was applied to simulate the freshwater discharge from the upper steam watershed, and the EFDC was performed to compute water flow, water temperature, and salinity based on time series from 2008 to 2009. The calibration and validation are performed to analyze horizontal and vertical gradients. The horizontal trend of model simulation results is reflected in the trend of observed data tolerably. The vertical trend is conducted an analysis of seasonal comparisons because of the limitation of vertically observed data. Water temperature reflects on the seasonal changes. Salinity has an effect on the near river input spots. The impact area of salinity is depending on the sea water distribution by gate operation, mainly.

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

Development and Application of Hydrological Safety Evaluation Guidelines for Agricultural Reservoir with AHP (AHP를 이용한 농업용저수지 수문학적 안전성평가 방법 개발 및 적용)

  • Lee, Jae Ju;Park, Jong Seok;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.235-243
    • /
    • 2014
  • According to the "Safety Evaluation Detailed Instructions (Dam)", precise safety inspection is carried out for dams that exceed a certain scale. However, as the Hydrological Safety Evaluation from various evaluation standards is designed to evaluate the safety of existing dams considering PMF, the evaluation is much less applicable for most agricultural reservoirs. Therefore, the Hydrological Safety Guidelines for agricultural reservoirs are expected to be re-evaluated considering the diverse risk factors with the coefficient model and AHP in this study. The coefficient model has been developed by selecting the hydrological safety superordinate subordinate evaluation factors to reflect diverse risk factors of agricultural reservoirs. After calculating the sum of indicators score for each evaluation factors, validation procedures were performed for the questionnaire which a panel answered. The practical coefficient has eventually been estimated for the hydrological safety evaluation considering the diverse risk factors. The conclusions acquired based on the study done are that both most agricultural reservoirs were classified as flood defense capability is insufficient and agricultural reservoirs which meet embankment-freeboard standards considering PMF was overestimated.

Status of Riparian Vegetation and Implication for Restoration in the Seunggi Stream, Incheon (인천 승기천에서 하안식생의 현황과 복원 방안)

  • Cho, Kang-Hyun;Kim, Jaai;Lee, Hyo Hye Mi;Kwon, Oh Byung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.62-73
    • /
    • 2001
  • The riparian environments of urban streams in Korea have been disturbed through the channelization for flood control and artificial land use as well as water pollution and flow decrease due to industrialization and urbanization. The flora and vegetation structure were investigated and an implication of stream restoration was discussed for the conservation of biodiversity in the riparian area of the Seunggi stream in Incheon. Naturalized plants and ruderal plants were widely distributed in the riparian area which was disturbed from cultivating, trampling, dumping etc. Submerged and floating hydrophytes were not found in the stream due to channelization and water pollution. Some halophytes were remained in downstream and reservoir after reclamation and embankment. The communities of Humulus japonicus, Panicum dichotomiflorum, Digitaria sanguinalis, Artemisia montana, Amaranthus retroflexus, and Aster pilosus were distributed in the disturbed area of bank slope and floodplain in the stream. As a natural potential vegetation, Phragmites australis in the wet meadow, Typha latifolia, Typha angustifolia, Oenanthe javanica, Persicaria thunbergii, and Penthorum chinense in the marsh, and Salix babylonica and Salix matsudana for. tortuosa in the woodland appeared in the floodplain. The topography in the stream played an important role on the distribution of riparian vegetation in the Seunggi stream. Appropriate methods for conservation and restoration of the riparian ecosystems must be planned on the basis of the actual vegetation in the disturbed urban stream.

  • PDF

Suggestion for the Maintenance Program of the Sea Dike Using Geophysical Methods (지구물리학적 방법을 이용한 방조제 유지·관리 체계 제안)

  • Yong, Hwan-Ho;Cho, In-Ky;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.275-283
    • /
    • 2013
  • The sea dike is the most important facility of reclamation projects, and plays an important role in securing freshwater in the reservoir. Systematic research on practical approaches and data analysis techniques are lacking even though some geophysical methods such as electrical resistivity and self-potential surveys are included within the inspection processes. Hence, geophysical methods were considered for improvement of precision safety diagnosis methods after problems in the maintenance system have been identified, such as safety checks and precision safety diagnoses. In addition, geophysical methods customized according to variations in ambient environmental limiting factors such as pore pressure changes by tidal fluctuation, compaction characteristics of the fill materials, and the surface condition of the embankment were suggested.

A Study on the Physical Characteristics of Irrigation Reservoirs in Korea (우리나라 관개용 흙댐 저수지의 외형적 제특성에 관한 연구)

  • 정두희;안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.29-37
    • /
    • 1983
  • This study was carried out not only to prepare available materials that can be utilized in basic planning of irrigation reservoirs, but also to contribute to the study on countermeasures for reasonable irrigation water development in Korea in the future, through the investigation for the structural characteristics of reservoirs and their change trend by an epoch. During this study 123 sites of sample reservoirs were analysed in their dimensions of physical constituent factors. The physical characteristics and their change trends revealed by this study are summarized as follows: 1. For the irrigation earth dam in Korea the correlation between dam volume (v) and dam height & length (H$^2$L) can be described as the formula of v=1. 434H2L~17, 300 (r=0. 933), from which embankment amount is assumed to be quickly estimated under determined dam height and length of the proposed reservoir. 2. The ratio of dam volume to dam height & length ranges approximately from 0.5 to 3 (1.7 in average), that of storage capacity to dam volume 2 to 10 (8.4 in average), that of irrigation area to full water surface area 5 to 20 (13 in average) and that of catchment area to irrigation area 2 to 5 (4 in average). Though correlation between dam volume and dam height & length is high, that between others is relatively low. 3. Average storage depth ranges approximately from 4m to l0m (6.6m in average), unit storage capacity 0. 4m to 0. 8m (0.54 in average) and shape factor of dam 5 to 20 (10.5 in average). 4. The more recently planned the reservoirs were, the less storage capacity, dam volume, full water surface and dam shape factor they have. 5. The more recently planned the reservoirs were, the larger storage depth and unit storage capacity they have.

  • PDF

Investigation of Changes in Fluvial Landforms in the Yeoju Reach of the Han River by the Han River Restoration Project (한강살리기사업에의한 한강 여주 구간의 하천 지형 변화 고찰)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.29-46
    • /
    • 2020
  • In this study, changes in the fluvial landforms of the Yeoju section of the Han River, which was made up of the Han River Restoration Project, were examined through existing previous research data, government's environmental impact assessment data, satellite images, and field observations. For example, In the vicinity of Dori Island, the most upstream part of the study section, the location of the confluence of the Han River and Cheongmi Stream was changed, and it was found that a significant portion of the sand sedimentary layer disappeared. In the Bawuinupgubi area, the wetland, which is the first class in the ecological nature, was greatly modified, and the elevation of the ground rose as Gangcheon island and it was completely separated from the river by dredging The confluence of Geumdangcheon and the point bar of Yeonyang-ri in the south were also dredged, turned into an artificial waterfront park, and a chute channel remained in the form of a wetland was also developed as a recreational park. The deposional forms around Baekseok-ri islands also disappeared as dredging was carried out. Among the areas adjacent to the confluence of Bokcheon and Yangchon-ri Island, some sedimentay forms remains, but the abandonned channel between Yangchon-ri and the northern river bank has been changed into a riverside reservoir through dredging and embankment construction, and the waterway of the tributary river(Yazoo) has been greatly changed.

Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River (유사계의 역동성 감소가 지석천 충적하도의 지형변화에 미치는 영향)

  • Ock, Gi-Young;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.445-454
    • /
    • 2012
  • The present study aims to investigate the long-term channel morphological changes derived from channelization, embankment and levee construction works in unregulated fluvial channel of the Jiseock River. Analyses of aerial photographs taken past (Year 1966) and recent (Year 2002) showed the temporally remarkable changes in channel planform such as channel shape, bar migration, vegetation encroachment in bar. During the period, the natural single threading changed into braided types together with decreasing sinuosity by 9.2%, increasing vegetation occupied bar ranged 97% of total bars area. Because such channel morphological changes are closely similar to those in dam downstream channels, we assume that both/either flow regime alteration and/or sediment transport discontinuity may be critical for the fixed channel and spread of vegetated bars even in unregulated river without dam reservoir upstream. We found more reduced frequency and magnitude of flooding water level comparing with past, but no significant alteration of inter annual water level variation. Bed material has been coarsened by 4~5 times and the riverbed has been degraded in overall channel but aggraded locally in conjunction reach of tributaries. The results indicates that reduced sediment dynamics in fluvial channel which derived by bed material coarsening, river bed degradation and unbalanced sediment transport capacity between tributary and mainstem can be a causal factor to trigger channel morphological changes even in unregulated rivers.

Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves (P파 초동주시와 표면파 분산곡선 역산을 통한 흙댐의 이상대 탐지)

  • Kim, K.Y.;Jeon, K.M.;Hong, M.H.;Park, Young-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

Stress Analysis of Fill Dam by FEM (FEM에 의한 필댐의 응력해석(應力解析))

  • Kang, Yea Mook;Cho, Seong Seup;Yang, Hae Jin
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.79-90
    • /
    • 1992
  • The embankment material of Andong Dam was the decomposed granite soil, and FEM analysis with settlement and stress characteristics were studied in this thesis. and also the results were as follows: 1. The vertical settlement of dam quite nearly coincides with the calculated one by FEM. A maximum value of the measured and the calculated is 40cm and 42cm, respectively, at the EL. 130m. 2. The measured settlement values of the central parts in elevation are nearly the same as those of the calculated, and the settlement values in order of magnitude are in core, filter, random and rock. 3. Horizontal deformation of max. 21cm in downstream is larger than that of max. 17cm in upstream, which is highly influenced by the water pressure of reservoir water level and the earth pressure of coffer dam in upstream. 4. Reverse arching effect of vertical stress in streamflow section are caused by the difference of stiffness, because stiffness is larger in core zone than in filter zone. 5. Load transfer ratio which is the ratio of principal stress of core zone and filter zone is 1.06, which clearly showes the reverse arching effect in vertical stress.

  • PDF