• Title/Summary/Keyword: Reservoir Yield

Search Result 67, Processing Time 0.021 seconds

A Study on the Storage-Yield Relationship of Reseroir (저수지의 Storage-Yield에 관한 연구)

  • 이순탁;장인수
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.253-264
    • /
    • 1985
  • Basically, there are two ways viewing the reservoir storage-yield relationship., The most common viewpoint is the determination of the storage required at a given reservoir to supply a required yield. This type of problem is usually encountered in the planning and early design phases of a reservoir. The second viewpoint is the determination of yield from a given amount of storage. This often occurs in the final design phases or in re-evaluation of an existing reservoir for a more comprehensive analysis. The purpose of this study is to improve the present methodology estimating the storage-yield relationship for a reservoir design or a reservoir operation. The Residual Mass curve Technique, the slightly modified version of Low Flow Techniques and the Transition Probability Matrix Technique are reviewed and examined for the best fit technique to find the reservoir storage-yield realtionship. The historical data during 1917~1940 at the proposed Hongchun damsite and the synthetic data simulated by Thomas-Fiering model are utilized to examine the reservoir storge-yield relationship with three techniques in detail. After the three techniques which estimate the reservoir storage-yield relationship were reviewed extensively, it was concluded that the Residual Mass Curve Technique and the slightly modified version of Low Flow Techniques were suitable for a preliminary design, but the Transition Probability Matrix Technique Provided satisfactory results as a final design technique because it reflected the variation of a monthly yield as well as seasonlly.

  • PDF

Sediment Estimation of Large Reservoir Using Daily Flowrate Analysis (일유량 분석을 이용한 대규모 저수지의 퇴사량 추정)

  • 정재성
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.417-423
    • /
    • 1997
  • The objective of this study Is to supply basic data for large reservoir sedimentation research In future and make suggestions to maintain and opera능 the reservoir more of efficiently. At first, previous studios about the estimation of sediment yield rate were reviewed in Korea. And the discharge rating curves of upstream stage gauging stations and the correlation between dam Inflow and stage discharge were analyzed. With the analysis results, the spec유c sediment rate of Soyanggang dam was estimated as 608 m3/km2/yr. It was similar to that of Soyanggang dam feasibility study and 1994's field surveys of the reservoir than that of 1983's field surveys. Because the sediment rating curves were derived under the low discharge conditions, It needs to be checked under the flood conditions. However, the suggested methods such as flowrate analysis and sediment estimation will be useful to the sediment studios In future. Key words . reservoir sediment, sediment yield rate, rating curve, flowrate analysis.

  • PDF

Evaluation of impact of climate variability on water resources and yield capacity of selected reservoirs in the north central Nigeria

  • Salami, Adebayo Wahab;Ibrahim, Habibat;Sojobi, Adebayo Olatunbosun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.290-297
    • /
    • 2015
  • This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.

Predictive analysis of minimum inflow using synthetic inflow in reservoir management: a case study of Seomjingang Dam (자료 발생 기법을 활용한 저수지 최소유입량 예측 기법 개발 : 섬진강댐을 대상으로)

  • Lee, Chulhee;Lee, Seonmi;Lee, Eunkyung;Ji, Jungwon;Yoon, Jeongin;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.311-320
    • /
    • 2024
  • Climate change has been intensifying drought frequency and severity. Such prolonged droughts reduce reservoir levels, thereby exacerbating drought impacts. While previous studies have focused on optimizing reservoir operations using historical data to mitigate these impacts, their scope is limited to analyzing past events, highlighting the need for predictive methods for future droughts. This research introduces a novel approach for predicting minimum inflow at the Seomjingang dam which has experienced significant droughts. This study utilized the Stochastic Analysis Modeling and Simulation (SAMS) 2007 to generate inflow sequences for the same period of observed inflow. Then we simulate reservoir operations to assess firm yield and predict minimum inflow through synthetic inflow analysis. Minimum inflow is defined as the inflow where firm yield is less than 95% of the synthetic inflow in many sequences during periods matching observed inflow. The results for each case indicated the firm yield for the minimum inflow is on average 9.44 m3/s, approximately 1.07 m3/s lower than the observed inflow's firm yield of 10.51 m3/s. The minimum inflow estimation can inform reservoir operation standards, facilitate multi-reservoir system reviews, and assess supplementary capabilities. Estimating minimum inflow emerges as an effective strategy for enhancing water supply reliability and mitigating shortages.

Reevaluation of Multi-Purpose Reservoir Yield (다목적댐의 용수공급능력 재평가)

  • Lee, Dong-Hoon;Choi, Chang-Won;Yu, Myung-Su;Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.361-371
    • /
    • 2012
  • For a basin with existing reservoirs, the necessity of additional water demands has been proposed, as well as a reevaluation of existing reservoir yield has been proposed. The objective of this study is to reevaluate a multipurpose reservoir yield and to assess the possibility of additional water supply according to increase of downstream water demands. Andong and Imha Reservoirs are selected for reevaluation. The standard reservoir operation rule model and the HEC-ResSim model were used for reservoir simulation for 30 years (1979~2008). In this study, water supply reliability was set up as 96.7% and 95.0% with yearly and monthly evaluating unit. In case of 95% water supply reliability with yearly evaluating unit, water supply capability of Andong reservoir was evaluated as 893MCM and water supply capability of Imha reservoir was evaluated as 382MCM, and that results showed that water yields for both reservoirs are less than the original designed yields.

A Correlation of reservoir Sedimentation and Watershed factors (저수지 퇴사량과 유역인자와의 상관)

  • 안상진;이종형
    • Water for future
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 1984
  • It si presented here that in order to estimate reservoir sedimentation rate through the use of reservoir survey data of 66 irrigation reservoir in 3 major watersheds in this country, the correlation between reservoir sedimentation rate and the following factors; watershed area, trap-efficiency, watershed slope, shape factor of water shed, and reservoir deposition age in two models simple regression model and multiple regression model. Appropriatness of the proposed models have been calibrated from the survey data and as a result, it has been determined that the multiple regression model is much more accurate than the simple regression model. The annual sediment yield is correlated with watershed area and reservoir trap efficiency. It has been found that variation of the annual average sedimentation rate and the annual reservoir capacity loss rate are influenced by the trap efficiency of reservoir.

  • PDF

Longitudinal and Vertical Variations of Long-term Water Quality along with Annual Patterns in Daecheong Reservoir

  • Lee, Sang-Jae;Shin, Jae-Ki;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.199-211
    • /
    • 2010
  • The objectives for this study were to evaluate spatial and temporal characteristics of water quality, based on long-term water quality monitoring data during 1993~2008. We found that physico-chemical and ecological conditions in the Daecheong Reservoir (DR) were modified by the construction of upper dam (i.e., Yongdam Reservoir). total phosphorus (TP), Secchi depth (SD), and chlorophyll-a (CHL) in the DR showed significant longitudinal decreases along the headwater-to-the downlake, indicating a large spatial variation, and this gradient was more intensified during the high-flow season (monsoon). Nutrient-rich water containing high nitrogen and phosphorus in the monsoon season (July~August) passed through the reservoir as a density current in the metalimnetic depth, and also high suspended solids increased in the metalimnetic depth, especially during the monsoon. According to the deviation analysis of Trophic State Index (TSI), >50% of TSI (CHL)-TSI (SD) and TSI (CHL)-TSI (TP) values were negatives, so that inorganic suspended solids (non-votatile solids) influenced the underwater light regime against phytoplankton growth. Also, ratios of CHL:TP after the dam construction evidently increased, compared to the values before the upper dam constructions, indicating a greater yield of phytoplankton in the unit phosphorus. Overall data showed that ecological and functional changes in Daecheong Reservoir occurred after the construction of upper dam (Yongdam Reservoir).

Water Yield Evaluation of a Reservoir System Based on a Deficit Supply in the Han River Basin (부족분 공급방식의 한강수계 저수지 시스템 용수공급능력 평가)

  • Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.477-484
    • /
    • 2020
  • Reservoir operation affects the sustainability of a water supply. However, the increase in the temporal and spatial variability of rainfall, attributed to climate change, has led to severe droughts and increased difficulty in maintaining a sustainable discharge at certain locations in a reservoir system operation. In this study, water yield was evaluated using reservoir simulation with varied water supply. Three reservoir system models were simulated for nine reservoirs in the Han River basin. The time-based reliability, volumetric reliability, and resiliency were used to evaluate the results. Each case was simulated by applying firm supply, deficit supply, and deficit supply with historical power release of the Hwacheon Reservoir. As a result of the simulation, all indexes were increased when the deficit supply was applied. In particular, the time-based reliability increased by more than 30%, and the supply reliability increased by about 4%. The result showed that the water supply of the entire water system could be increased when all reservoirs in the water system were operated to supply water and maintain sustainable discharge at the same downstream point. The deficit supply was an efficient reservoir operation method for responding to climate change, especially increased rainfall variability.

Effects on Conservation and Flood Control Systems According In Normal Water Level Change from Daechung Multi-Purpose Reservoir (대청 다목적댐의 상시만수위 변경에 따른 이수 및 치수 영향 검토)

  • Yi, Jae-Eung;Kwon, Dong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.1-10
    • /
    • 2007
  • Reallocation procedure of multipurpose reservoir storage capacity between flood control and conservation is presented as an alternative to secure more water resources. Storage reallocation is an adaptive management mechanism for converting existing normal pool level of reservoirs to more beneficial uses without requirement for physical alteration. This study is intended to develop a reservoir storage reallocation methodology that allows increased water supply storage without minimizing adverse impacts on flood control. The methodology consists of flood control reservoir simulation for inflows with various return periods, flow routing from reservoir to a potential damage site, analyzing river carrying capacity, and reservoir yields estimation for reallocated storages. For the flood control model, a simulation model called Rigid ROM(Reservoir Operation Method) and HEC-5 are used. The approach is illustrated by applying it to two reservoirs system in Geum River basin. Especially with and without new project conditions are considered to analyze trade-offs between competing objectives.

Comparative Evaluation of Muddy Water Occurrence Possibility in Dam Reservoir Using GIS (GIS를 이용한 댐 저수지의 흙탕물 발생 가능성 비교 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong;Park, Jin-Hyeog
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.94-106
    • /
    • 2011
  • The muddy water occurrence possibility of reservoir were analyzed by considering GIS based soil erosion model, sediment delivery ratio and effective reservoir capacity. For the purpose, the weakness factors for the establishment of countermeasures of basin were analyzed by evaluating input factors of RUSLE model based on spatial data such as DEM, soil map, landcover map and so on. The potential of soil erosion was estimated considering highland upland. The sediment yields of Chungju-Dam and Soyanggang-Dam showed the highest result in sediment yield using sediment delivery ratio with considering basin area. The sediment concentration of Imha-Dam and Chungju-Dam showed the highest value as 0.791 $kg/m^3/yr$ and 0.526 $kg/m^3/yr$ respectively in sediment concentration with considering effective reservoir capacity. Especially, sediment yield of Imha-Dam was about 2.36 times lower than Soyanggang-Dam, but the sediment concentration was 1.90 times higher preferably, because the effective reservoir capacity of Imha-Dam was about 4.48 times lower. This study calculated sediment concentration using the 10 years mean rainfall event and could consider the aspects of soil, terrain, landcover, cultivation condition and effective reservoir capacity of each basin effectively through the results. Therefore, these quantitative sediment concentration data could be used to estimate the potential of high density turbid water for reservoir and applied with effective tools for the management of reservoir.