• 제목/요약/키워드: Reservoir Water Storage Rate

검색결과 55건 처리시간 0.022초

현장조사 관개 기준에 따른 농업용 저수지 운영 분석 (Agricultural Reservoir Operation Analysis According to Surveyed Irrigation Guideline)

  • 김마가;최진용;방재홍;윤푸른;김귀훈
    • 한국농공학회논문집
    • /
    • 제65권5호
    • /
    • pp.37-49
    • /
    • 2023
  • The drought risk has been increasing recently due to climate change causing the extreme climate to be more frequent. In order to supply agricultural water stably under drought, it is necessary to operate an agricultural reservoir in response to drought. To this end, it is crucial to establish appropriate drought response operation rules considering weather conditions and reservoir status. In the reservoir operation simulation, the supply amount differs from the actual reservoir supply for many reasons, including maintaining water levels for supply and accommodating farmers' requests. So, for a more realistic reservoir operation simulation, it is necessary to reflect the reservoir operation rules of the actual water management site. Therefore, in this study, through a survey, the standards for limitation of agricultural water supply applied to agricultural reservoirs in Korea were investigated, and the criteria for drought response reservoir operation (DRO) were established based on the survey. Then, the DRO was applied to the irrigation period for nine subject reservoirs. The applicability was evaluated by comparing the DRO result to the operation result of HOMWRS (Hydrological Operation Model for Water Resources System). The reservoir drought index, storage rate, and daily supply were compared for evaluation. From the result, DRO showed more stable operation results in most cases against drought as it has fewer days of water supply limitation and a somewhat reservoir storage rate which can be utilized for prolonged drought.

순환형 농업용수관리를 위한 농업용 저수지의 비관개기 양수저류 추정 (Water Balance Analysis of Pumped-Storage Reservoir during Non-Irrigation Period for Recurrent Irrigation Water Management)

  • 방나경;남원호;신지현;김한중;강구;백승출;이광야
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.1-12
    • /
    • 2020
  • The extreme 2017 spring drought affected a large portion of South Korea in the Southern Gyeonggi-do and Chungcheongnam-do districts. This drought event was one of the climatologically driest spring seasons over the 1961-2016 period of record. It was characterized by exceptionally low reservoir water levels, with the average water level being 36% lower over most of western South Korea. In this study, we consider drought response methods to alleviate the shortage of agricultural water in times of drought. It could be to store water from a stream into a reservoir. There is a cyclical method for reusing water supplied from a reservoir into streams through drainage. We intended to present a decision-making plan for water supply based on the calculation of the quantity of water supply and leakage. We compared the rainfall-runoff equation with the TANK model, which is a long-term run-off model. Estimations of reservoir inflow during non-irrigation seasons applied to the Madun, Daesa, and Pungjeon reservoirs. We applied the run-off flow to the last 30 years of rainfall data to estimate reservoir storage. We calculated the available water in the river during the non-irrigation season. The daily average inflow from 2003 to 2018 was calculated from October to April. Simulation results show that an average of 67,000 tons of water is obtained during the non-irrigation season. The report shows that about 53,000 tons of water are available except during the winter season from December to February. The Madun Reservoir began in early October with a 10 percent storage rate. In the starting ratio, a simulated rate of 4 K, 6 K, and 8 K tons is predicted to be 44%, 50%, and 60%. We can estimate the amount of water needed and the timing of water pump operations during the non-irrigation season that focuses on fresh water reservoirs and improve decision making for efficient water supplies.

RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석 (Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios)

  • 방재홍;최진용;이상현
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.63-72
    • /
    • 2018
  • The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.

저수지 관리 관행을 반영한 농업용 저수지 저수율 추정 (Estimation of Agricultural Reservoir Water Storage Based on Empirical Method)

  • 강한솔;안현욱;남원호;이광야
    • 한국농공학회논문집
    • /
    • 제61권5호
    • /
    • pp.1-10
    • /
    • 2019
  • Due to the climate change the drought had been occurring more frequently in recent two decades as compared to the previous years. The change in the pattern and frequency of the rainfall have a direct effect on the farming sector; therefore, the quantitative estimation of water supply is necessary for efficient agricultural water reservoir management. In past researches, there had been several studies conducted in estimation and evaluation of water supply based on the irrigational water requirement. However, some researches had shown significant differences between the theoretical and observed data based on this requirement. Thus, this study aims to propose an approach in estimating reservoir rate based on empirical method that utilized observed reservoir rate data. The result of these two methods in comparison with the previous one is seen to be more fitted for both R2 and RMSE with the observed reservoir rate. Among these procedures, the method that considers the drought year data shows more fitted outcomes. In addition, this new method was verified using 15-year (2002 to 2006) linear regression equation and then compare the preceeding 3-year (1999 to 2001) data to the theoretical method. The result using linear regression equation is also perceived to be more closely fitted to the observed reservoir rate data than the one based on theoretical irrigation water requirement. The new method developed in this research can therefore be used to provide more suitable supply data, and can contribute to effectively managing the reservoir operation in the country.

농업용 저수지에서의 농업용수 잠재능 평가 (Evaluation of Agricultural Water Supply Potential in Agricultural Reservoirs)

  • 김진수;이재용;이정범;송철민;박지성
    • 한국농공학회논문집
    • /
    • 제58권2호
    • /
    • pp.65-71
    • /
    • 2016
  • The new concept of agricultural water supply potential, which is mean annual turnover rate times unit storage capacity, was introduced for agricultural reservoirs. We investigated characteristics of mean annual turnover rate and unit storage capacity for agricultural reservoirs with storage capacity of over $1million\;m^3$. The curve of agricultural water supply potential represents change in mean annul turnover rate according to change in unit storage capacity. The mean annual turnover rate and unit storage capacity in the reservoirs with high minimum storage ratio are significantly higher than those in the reservoirs with low minimum storage ratio. Most of unstable water supply reservoirs showed low mean annual turnover rate or low unit storage capacity, indicating that mean annual turnover rate may be an index of stability degree for agricultural water use. The reservoirs with mean annual turnover rate of over 2 and unit storage capacity of over 0.8 m may be estimated as the stable water supply zone for 10 frequency dry year. The reservoirs with high agricultural water supply potential can belong to the wide range of stable water supply zone. The results suggest that relation between mean annual turnover rate and unit storage capacity may be used in evaluating stability degree for agricultural water supply in the reservoirs.

용담댐 운영 시나리오에 따른 대청댐 저수량 변화에 관한 연구 (A Study on Daily Water Storage Simulation of the Daecheong Dam by Operation Scenario of the Yongdam Dam)

  • 노재경;김현호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1403-1407
    • /
    • 2005
  • In order to analyze the water storage of the Daecheong dam after constructing the Yongdam dam situated in upstream, a daily cascaded simulation model for analyzing water storages in the Yongdam-Daecheong dams was developed. Operation scenarios of the Yongdam dam were selected to 8 cases with the combinations of downstream outflows and water supplies to the Jeonju region. Daily water storages in the Daecheong dam was analyzed daily by simulating from 1983 to 2004. The results are summarized as follows. Firstly, water supplies from the Daecheong dam were analyzed to amount $1,964.2Mm^3$ on a yearly average in case without the Yongdam dam. In case with the Yongdam dam, water supplies from the Daecheong dam were analyzed to amount $1,858.7\~1,927.3Mm^3$ in case with downstream outflow of $5\;m^3$ is, and were analyzed to amount $1,994.9\~2,017.8Mm^3$ in case with downstream outflow of $10\;m^3/s $. These values are compared to $1,649Mm^3$ applied in design. Secondly, reservoir use rate which was defined rate of water supply to effective water storage reached $241.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $228.3\~236.8\% In case with downstream outflow of $5\;m^3/s$, and reached $245.1\~247.9\% in case with downstream outflow of $10\;m^3/s$. Thirdly, runoff rate which is defined rate of dam inflow to areal rainfall reached $57.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $62.0\~68.4\% in case with downstream outflow of $5\;m^3/s$, and reached $64.1\~68.5\% in case with downstream outflow of $10\;m^3/s$. Fourth, in case with downstream outflow of $10\;m^3/s$ is from the Yongdam dam, appropriate water supply amounts to the Jeonju region were analyzed to only $0.50Mm^3/day$ from the daily simulation of water storages in the Yongdam dam. Comprehensively, water supply capacity of the Daecheong dam was analyzed to affect in small amounts in spite of the construction of the Yonsdam dam. It is effected to achieve the effective water management of the Yongdam dam and the Daecheong dam by using the developed cascaded model.

  • PDF

저수지의 퇴사에 관한 연구 -진양지구를 중심으로- (A Study for Sedimentation in Reservoir -on district of Chin Young-)

  • 류시창;민병향
    • 한국농공학회지
    • /
    • 제17권3호
    • /
    • pp.3840-3847
    • /
    • 1975
  • With 30 excisting reservoirs in the Chin-Young area, the Sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoir capacity. The reservoirs has a total drainage area of 3l4l ha, with a total capacity of 43.23 ha-m, and are short of water supply due to reduction of reservoir capacity, Annual sedimentation in the reservoir is relation to the drainage area, the mean of annual rainfall, and the slop of drainage area. The results of obtained from the investigation are summarized as follows: (1) A Sediment deposition rate is high, being about 7.03㎥/ha of drainage area, and resulting in the overage decrease of reservoir capacity by 16.1%. This high rate of deposition coule be mainly attributed to the serve denudation of forests due to disorderly cuttings of tree. (2) An average unit storageof 116mm as the time of initial construction is decreased to 95.6mm at present. This phenomena cause a greater storage of irrigation water, sinceit was assumed that original storage quantity itself was already in short. (3) A sediment deposition rate as a relation to the capacity of unit drainge area is as follow: Qs=1.27(C/A)0.6 and standard deviation is 185.5㎥/$\textrm{km}^2$/year. (4) A sediment deposition rate as a relation to the mean of annual rainfall is as follow: Qs=21.9p10.5 and the standard deviation is 364.8㎥/$\textrm{km}^2$/year. (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow: Qs=39.6S0.75 and the standard deviation is 190.2㎥/$\textrm{km}^2$/year (6) Asediment deposition rate as a relation to the drainage area, mean of rainfall, mean of slope of drainage area is: Log Qs=0.197+0.108LogA-6.72LogP+2.20LogS and the standard deviation is 92.4㎥/$\textrm{km}^2$/year

  • PDF

호남지방에 저수지의 매몰상황과 저수량에 관한 조사연구(농학계) (The Research of Storage Capacity & Sedimentation of Reservoirs in HONAM Province)

  • 이창구
    • 한국농공학회지
    • /
    • 제13권2호
    • /
    • pp.2262-2275
    • /
    • 1971
  • 조사대상은 전라북도 관내 토지개량 조합 저수지 14개소와 전라남도관내 토지개량 조합저수지 20개소에 대하여 저수량 및 토사매몰량을 실측조사하고 또한 두 도내에 산재하여 있는 소류지 3,347개소에 대하여는 해당 시군에 비치된 대장에 의하여 조사하였다. 그 결과를 요약하면 다음과 같다. 1. 저수지 유역의 임상이 저수지 설치당시에는 대부분 산림이 울창하여 양호하였든 것이 8.15 해방과 6.25동란으로 주민들의 도벌과 남벌로 인하여 거의 황폐되었으며 또 유역내의 토사유출과 저수지내에 유사침전이 심하게 되어 유역면적 1ha당 연평균 $10.63m^3$의 토사침적을 보게 되었다. 2. 이 결과는 평균 27.5%의 저수량 감소를 초래하게 된 것이다. 특히 소류지는 계획당시에는 단위 저수량이 평균 0.19hm로 판명되었는데 이는 원래부터 저수량이 부족한데다가 다년간의 토사 매몰로 인하여 더욱 부족하게 되었다. 3. 평소의 유지관리 상황이 매우 소홀하여서 제방누수 산지 불임부의 누수 통관누수 등이 있는데도 불구하고 개보수를 하지 않고 방치한 곳도 있다. 4. 한발시에 준설한 곳도 있기는 하나 그 준설토사를 저수지 안에 쌓두어 환원된 예도 있었다. 5. 일반농민이 용수를 낭비하는 경향이 많었다. 이상과 같은 실정이므로 수자원 보완책으로서 다음과 같은 방안을 채택할 것을 당국에 건의하는 바이다. (1) 벼가 생육기별로 요구하는 최소한의 용수량만을 관계하는 절수재배를 여행한 것. (2) 용수가 극히 부족한 지방에서는 답토양의 수분을 70% 정도로 유지시키도록 수일간에 한번씩 소량으로 관계하는 계획관개를 실행한 것. (3) 지하수 복류수를 최대한 이용할 수 있도록 지구안에 관정을 굴착할 것. (4) 지구안에 보가 설치되어 있는 곳에서는 집수정을 병설하여 한발시에는 복류수를 양수하여 관개에 이용할 것. (5) 저수지 유역내의 산림은 이를 일체 보안림에 편입시켜서 조림 사방 야계등 공사를 우선적으로 실시하여 수원함양에 주력할 것. (6) 못자리는 집단식을 채택하고 묘대용수는 자체 해경을 원칙으로 할 것. (7) 매몰된 토사는 될 수록 준설하여 계획 저수량을 확보한다. (8) 하천이 저수지로 흘러들어가는 어구에는 웨이어를 설치하여 유입토사를 사전에 처리할 것. (9) 물넘이의 표고는 입지 조건에 따라 자동식 구조로하여 올리되 홍수위는 올리지 않고 홍수시에는 수위가 강하되어 재방을 덧쌓거나 용지매수를 하지 않고서도 저수량을 증대하는 방안을 모색할 것.

  • PDF

단변량 및 다변량 LSTM을 이용한 농업용 저수지의 저수율 예측 (Prediction of Water Storage Rate for Agricultural Reservoirs Using Univariate and Multivariate LSTM Models)

  • 조성억;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1125-1134
    • /
    • 2023
  • 우리나라의 17,000여개의 저수지 중 13,600개소의 소규모 농업용 저수지에는 수문 계측 시설이 설치되지 않아서, 저수율 예측과 합리적인 저수지 운영이 쉽지 않다. 본 연구는 인공지능 기술을 이용하여 농업용 저수지의 저수율을 예측하는 것을 목적으로 하며, 단변량 long short-term memory (LSTM)에서 저수율 그 자체를 사용하는 것뿐만 아니라, 다변량 LSTM에서 강수 등의 기상변수와 시기 등의 계절변수를 추가하여 예측에 활용하였다. 이동저수지의 2013년부터 2020년까지 8년간 데이터로 모델을 학습시키고, 모델의 예측 결과를 2021년의 일일 저수율 데이터로 검증하였다. 단변량 LSTM은 1일 후 저수율을 root-mean square error (RMSE) 1.04%, 3일 후 2.52% 이내, 5일 후 4.18%의 오차로 예측하였으며, 다변량 LSTM은 1일 후 저수율을 RMSE 0.98%, 3일 후 1.95%, 5일 후 2.76%의 오차로 예측하여 더 좋은 성능을 보였다. 1일 후 저수율을 예측하는 다변량 모델의 경우, 시계열 저수율 이외에도 date of year (DOY)와 1일 및 5일 누적 강수량이 중요한 변수인 것으로 나타났는데, 이를 통해 볼 때 당일 저수율에 영향을 미치는 강수의 시간적 범위는 5일 정도인 것으로 사료된다.

농업용 저수지 이수관리를 위한 저수율 가뭄단계기준 개선 (Improvement of Drought Operation Criteria in Agricultural Reservoirs)

  • 문영식;남원호;우승범;이희진;양미혜;이종서;하태현
    • 한국농공학회논문집
    • /
    • 제64권4호
    • /
    • pp.11-20
    • /
    • 2022
  • Currently, the operation rule of agricultural reservoirs in case of drought events follows the drought forecast warning standard of agricultural water supply. However, it is difficult to preemptively manage drought in individual reservoirs because drought forecasting standards are set according to average reservoir storage ratio such as 70%, 60%, 50%, and 40%. The equal standards based on average water level across the country could not reflect the actual drought situation in the region. In this study, we proposed the improvement of drought operation rule for agricultural reservoirs based on the percentile approach using past water level of each reservoir. The percentile approach is applied to monitor drought conditions and determine drought criteria in the U.S. Drought Monitoring (USDM). We applied the drought operation rule to reservoir storage rate in extreme 2017 spring drought year, the one of the most climatologically driest spring seasons over the 1961-2021 period of record. We counted frequency of each drought criteria which are existing and developed operation rules to compare drought operation rule determining the actual drought conditions during 2016-2017. As a result of comparing the current standard and the percentile standard with SPI6, the percentile standard showed severe-level when SPI6 showed severe drought condition, but the current standard fell short of the results. Results can be used to improve the drought operation criteria of drought events that better reflects the actual drought conditions in agricultural reservoirs.