• Title/Summary/Keyword: Research training

Search Result 7,738, Processing Time 0.045 seconds

Violations of Information Security Policy in a Financial Firm: The Difference between the Own Employees and Outsourced Contractors (금융회사의 정보보안정책 위반요인에 관한 연구: 내부직원과 외주직원의 차이)

  • Jeong-Ha Lee;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.17-42
    • /
    • 2016
  • Information security incidents caused by authorized insiders are increasing in financial firms, and this increase is particularly increased by outsourced contractors. With the increase in outsourcing in financial firms, outsourced contractors having authorized right has become a threat and could violate an organization's information security policy. This study aims to analyze the differences between own employees and outsourced contractors and to determine the factors affecting the violation of information security policy to mitigate information security incidents. This study examines the factors driving employees to violate information security policy in financial firms based on the theory of planned behavior, general deterrence theory, and information security awareness, and the moderating effects of employee type between own employees and outsourced contractors. We used 363 samples that were collected through both online and offline surveys and conducted partial least square-structural equation modeling and multiple group analysis to determine the differences between own employees (246 samples, 68%) and outsourced contractors (117 samples, 32%). We found that the perceived sanction and information security awareness support the information security policy violation attitude and subjective norm, and the perceived sanction does not support the information security policy behavior control. The moderating effects of employee type in the research model were also supported. According to the t-test result between own employees and outsourced contractors, outsourced contractors' behavior control supported information security violation intention but not subject norms. The academic implications of this study is expected to be the basis for future research on outsourced contractors' violation of information security policy and a guide to develop information security awareness programs for outsourced contractors to control these incidents. Financial firms need to develop an information security awareness program for outsourced contractors to increase the knowledge and understanding of information security policy. Moreover, this program is effective for outsourced contractors.

Analysis of the Impact of Satellite Remote Sensing Information on the Prediction Performance of Ungauged Basin Stream Flow Using Data-driven Models (인공위성 원격 탐사 정보가 자료 기반 모형의 미계측 유역 하천유출 예측성능에 미치는 영향 분석)

  • Seo, Jiyu;Jung, Haeun;Won, Jeongeun;Choi, Sijung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.147-159
    • /
    • 2024
  • Lack of streamflow observations makes model calibration difficult and limits model performance improvement. Satellite-based remote sensing products offer a new alternative as they can be actively utilized to obtain hydrological data. Recently, several studies have shown that artificial intelligence-based solutions are more appropriate than traditional conceptual and physical models. In this study, a data-driven approach combining various recurrent neural networks and decision tree-based algorithms is proposed, and the utilization of satellite remote sensing information for AI training is investigated. The satellite imagery used in this study is from MODIS and SMAP. The proposed approach is validated using publicly available data from 25 watersheds. Inspired by the traditional regionalization approach, a strategy is adopted to learn one data-driven model by integrating data from all basins, and the potential of the proposed approach is evaluated by using a leave-one-out cross-validation regionalization setting to predict streamflow from different basins with one model. The GRU + Light GBM model was found to be a suitable model combination for target basins and showed good streamflow prediction performance in ungauged basins (The average model efficiency coefficient for predicting daily streamflow in 25 ungauged basins is 0.7187) except for the period when streamflow is very small. The influence of satellite remote sensing information was found to be up to 10%, with the additional application of satellite information having a greater impact on streamflow prediction during low or dry seasons than during wet or normal seasons.

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

A Study on the Investigation of Sanitary Knowledge and Practice Level of School Foodservice Employees in Jeonju (전주지역 학교급식 조리종사자의 위생지식 및 위생관리 수행에 관한 연구)

  • Han, Eun-Hui;Yang, Hyang-Sook;Shon, Hee-Sook;Rho, Jeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1210-1218
    • /
    • 2005
  • This study was to investigate the sanitary knowledge and its practice level of school foodservice employees in Jeonju area. A total of 508 questionnaires were usable; resulting in 79.0$\%$ response rate. Statistics data analysis was completed using the SPSS 10.0 program. The results of this study were summarized as follow : About 62$\%$ of school foodservice employees were 41 $\∼$50 years old and 84$\%$ of them had a irregular job and they had a sanitation training at least once a month. The school foodservice employees had more knowledge about 'personal hygiene' than that about 'equipment and facilities sanitation', 'foodborn disease and food microorganism' Their hygiene practice level were high for 'equipment and facilities sanitation' (4.90$\pm$0.25) and were lesser in the order from 'foodborn disease and food microorganism'(4.86$\pm$0.30), 'personal sanitation'(4.79$\pm$0.34) and the least for food processing hygiene (4.70$\pm$0.37). As a result of relationship between knowledge and hygiene practice level, knowledge of school foodservice employees was not influenced on tile hygiene practice level during their working.

Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion (지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발)

  • Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.111-136
    • /
    • 2018
  • In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.

The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining (데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석)

  • Lee, Su Hyun;Park, Jung Min;Lee, Hyoung Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.111-131
    • /
    • 2015
  • There are only a handful number of research conducted on pattern analysis of corporate distress as compared with research for bankruptcy prediction. The few that exists mainly focus on audited firms because financial data collection is easier for these firms. But in reality, corporate financial distress is a far more common and critical phenomenon for non-audited firms which are mainly comprised of small and medium sized firms. The purpose of this paper is to classify non-audited firms under distress according to their financial ratio using data mining; Self-Organizing Map (SOM). SOM is a type of artificial neural network that is trained using unsupervised learning to produce a lower dimensional discretized representation of the input space of the training samples, called a map. SOM is different from other artificial neural networks as it applies competitive learning as opposed to error-correction learning such as backpropagation with gradient descent, and in the sense that it uses a neighborhood function to preserve the topological properties of the input space. It is one of the popular and successful clustering algorithm. In this study, we classify types of financial distress firms, specially, non-audited firms. In the empirical test, we collect 10 financial ratios of 100 non-audited firms under distress in 2004 for the previous two years (2002 and 2003). Using these financial ratios and the SOM algorithm, five distinct patterns were distinguished. In pattern 1, financial distress was very serious in almost all financial ratios. 12% of the firms are included in these patterns. In pattern 2, financial distress was weak in almost financial ratios. 14% of the firms are included in pattern 2. In pattern 3, growth ratio was the worst among all patterns. It is speculated that the firms of this pattern may be under distress due to severe competition in their industries. Approximately 30% of the firms fell into this group. In pattern 4, the growth ratio was higher than any other pattern but the cash ratio and profitability ratio were not at the level of the growth ratio. It is concluded that the firms of this pattern were under distress in pursuit of expanding their business. About 25% of the firms were in this pattern. Last, pattern 5 encompassed very solvent firms. Perhaps firms of this pattern were distressed due to a bad short-term strategic decision or due to problems with the enterpriser of the firms. Approximately 18% of the firms were under this pattern. This study has the academic and empirical contribution. In the perspectives of the academic contribution, non-audited companies that tend to be easily bankrupt and have the unstructured or easily manipulated financial data are classified by the data mining technology (Self-Organizing Map) rather than big sized audited firms that have the well prepared and reliable financial data. In the perspectives of the empirical one, even though the financial data of the non-audited firms are conducted to analyze, it is useful for find out the first order symptom of financial distress, which makes us to forecast the prediction of bankruptcy of the firms and to manage the early warning and alert signal. These are the academic and empirical contribution of this study. The limitation of this research is to analyze only 100 corporates due to the difficulty of collecting the financial data of the non-audited firms, which make us to be hard to proceed to the analysis by the category or size difference. Also, non-financial qualitative data is crucial for the analysis of bankruptcy. Thus, the non-financial qualitative factor is taken into account for the next study. This study sheds some light on the non-audited small and medium sized firms' distress prediction in the future.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.