• 제목/요약/키워드: Research Topic Analysis

검색결과 1,276건 처리시간 0.03초

Topic Modeling Analysis of Social Media Marketing using BERTopic and LDA

  • YANG, Woo-Ryeong;YANG, Hoe-Chang
    • 산경연구논집
    • /
    • 제13권9호
    • /
    • pp.37-50
    • /
    • 2022
  • Purpose: The purpose of this study is to explore and compare research trends in Korea and overseas academic papers on social media marketing, and to present new academic perspectives for the future direction in Korea. Research design, data and methodology: We used English abstract of research paper (Korea's: 1,349, overseas': 5,036) for word frequency analysis, topic modeling, and trend analysis for each topic. Results: The results of word frequency and co-occurrence frequency analysis showed that Korea researches focused on the experiential values of users, and overseas researches focused on platforms and content. Next, 13 topics and 12 topics for Korea and overseas researches were derived from topic modeling. And, trend analysis showed that Korean studies were different from overseas in applying marketing methods to specific industries and they were interested in the short-term performance of social media marketing. Conclusions: We found that the long-term strategies of social media marketing and academic interest in the overall industry will necessary in the future researches. Also, data mining techniques will necessary to generate more general results by quantifying various phenomena in reality. Finally, we expected that continuous and various academic approaches for volatile social media is effective to derive practical implications.

토픽모델링과 언어네트워크분석을 활용한 스마트팜 연구 동향 분석 (A Study on Research Trends in the Smart Farm Field using Topic Modeling and Semantic Network Analysis)

  • 오주연;이준명;홍의기
    • 디지털융복합연구
    • /
    • 제20권2호
    • /
    • pp.203-215
    • /
    • 2022
  • 본 연구의 목적은 토픽모델링과 언어네트워크분석을 활용하여 한국의 스마트팜 분야 연구 동향과 지식구조를 파악하는 것이다. 연구목적을 달성하기 위하여 KCI(Korea Citation Index)의 스마트팜 관련 국내 학술지 104편을 대상으로 핵심어와 핵심어들의 연결 관계를 분석하고, LDA 토픽모델링 기법을 이용하여 연구주제와 관련된 토픽들을 분석하였다. 언어네트워크분석 결과, 국내 스마트팜 관련 연구 분야의 주요핵심어는 '환경', '시스템', '사용', '기술', '재배' 등이 나타났으며, 연결중심성, 매개중심성, 위세중심성 결과도 제시하였다. 토픽모델링분석결과, Topic 1은 '스마트팜 도입 분석', Topic 2는 '친환경 스마트팜과 스마트팜의 경제적 효율성', Topic 3은 '스마트팜 플랫폼 설계', Topic 4는 '스마트팜 생산 최적화', Topic 5는 '스마트팜 생태계', Topic 6은 '스마트팜 시스템 구현', Topic 7은 '스마트팜 관련 정부 정책'으로 나타났다. 본 연구는 국내 스마트팜 관련 연구 동향을 살펴봄으로써, 향후 국내의 스마트팜을 발전시키는 데 필요한 정책개발과 연구 방향성을 설정하는데 기초자료가 될 것으로 기대한다.

Overseas Research Trends Related to 'Research Ethics' Using LDA Topic Modeling

  • YANG, Woo-Ryeong;YANG, Hoe-Chang
    • 연구윤리
    • /
    • 제3권1호
    • /
    • pp.7-11
    • /
    • 2022
  • Purpose: The purpose of this study is to derive clues about the development direction of research ethics and areas of interest which has recently become a social issue in Korea by confirming overseas research trends. Research design, data and methodology: We collected 2,760 articles in scienceON, which including 'research ethics' in their paper. For analysis, frequency analysis, word clouding, keyword association analysis, and LDA topic modeling were used. Results: It was confirmed that many of the papers were published in medical, bio, pharmaceutical, and nursing journals and its interest has been continuously increasing. From word frequency analysis, many words of medical fields such as health, clinical, and patient was confirmed. From topic modeling, 7 topics were extracted such as ethical policy development and human clinical ethics. Conclusions: We founded that overseas research trends on research ethics are related to basic aspects than Korea. This means that a fundamental approach to ethics and the application of strict standards can become the basis for cultivating an overall ethical awareness. Therefore, academic discussions on the application of strict standards for publishing ethics and conducting researches in various fields where community awareness and social consensus are necessary for overall ethical awareness.

토픽 모델링을 이용한 지속가능패션 연구 동향 분석 (Analysis of sustainable fashion research trends using topic modeling)

  • 이하나
    • 복식문화연구
    • /
    • 제29권4호
    • /
    • pp.538-553
    • /
    • 2021
  • As interest in the sustainable fashion industry continues to increase along with climate issues, it is necessary to identify research trends in sustainable fashion and seek new development directions. Therefore, this study aims to analyze research trends on sustainable fashion. For this purpose, related papers were collected from the KCI (Korean Citation Index) and Scopus, and 340 articles were used for the study. The collected data went through data transformation, data preprocessing, topic modeling analysis, core topic derivation, and visualization through a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: consumer clothing consumption behavior and environment, upcycle product development, product types by environmental approach, ESG business activities, materials and material development, process-based approach, lifestyle and consumer experience, and brand strategy. Topics were related to consumption, production, and education of sustainable fashion, respectively. KCI analysis results and Scopus analysis results derived eight topics but showed differences from the comprehensive analysis results. This study provides primary data for exploring various themes of sustainable fashion. It is significant in that the data were analyzed based on probability using a research method that excluded the subjective value of the researcher. It is recommended that follow-up studies be conducted to examine social trends.

토픽모델링을 이용한 국내 미세먼지 연구 분류 및 연구동향 분석 (A Study on the Research Topics and Trends in South Korea: Focusing on Particulate Matter)

  • 박혜민;김태용;권대웅;허준용;이주연;양민준
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.873-885
    • /
    • 2022
  • 전 세계적으로 미세먼지(particulate matter, PM)와 사망률 및 유병률 증가의 관련성이 보고되면서 다양한 연구가 수행되었으며, 우리나라에서는 1990년대 후반을 기점으로 PM에 대한 중요성을 인식하고, PM에 대한 다양한 연구가 수행되었다. 본 연구에서는 '미세먼지' 관련 연구들의 주제를 분류하고, 각 주제별 연구 동향을 확인하기 위해 Research Information Sharing Service (RISS)에 게재된 미세먼지 관련 2,764편의 논문을 대상으로 Latent Dirichlet Allocate (LDA) 분석을 수행하였다. 연구 결과, 총 10개의 주제로 분류하는 것이 가장 적합하였으며, 미세먼지 관련 연구주제는 '미세먼지 저감(Topic 1)', '정부 정책 및 관리(Topic 2)', '미세먼지 특성(Topic 3)', '미세먼지 모델(Topic 4)', '환경교육(Topic 5)', '바이오(Topic 6)', '교통수단(Topic 7)', '황사(Topic 8)', '실내 미세먼지 오염(Topic 9)', '인체 위해성(Topic 10)'의 주제로 분류할 수 있었다. 특히, '정부 정책 및 관리(Topic 2)', '미세먼지 모델(Topic 4)', '환경교육(Topic 5)'. '바이오(Topic 6)' 관련 연구주제들이 시간에 따라 전체 논문에 대한 비율이 증가하는 추세를 보여 성행하는 것을 확인하였다(linear slope>0). 본 연구의 결과는 미세먼지 관련 다양한 분야의 연구자들에게 새로운 문헌 고찰의 방법론을 제시하고, 미세먼지 분야의 역사와 발전에 대한 이해를 제공했음에 의의가 있다.

임신성 당뇨와 모유수유에 대한 연구 동향 분석: 텍스트네트워크 분석과 토픽모델링 중심 (A study on research trends for gestational diabetes mellitus and breastfeeding: Focusing on text network analysis and topic modeling)

  • 이정림;김영지;곽은주;박승미
    • 한국간호교육학회지
    • /
    • 제27권2호
    • /
    • pp.175-185
    • /
    • 2021
  • Purpose: The aim of this study was to identify core keywords and topic groups in the 'Gestational diabetes mellitus (GDM) and Breastfeeding' field of research for better understanding research trends in the past 20 years. Methods: This was a text-mining and topic modeling study composed of four steps: 1) collecting abstracts, 2) extracting and cleaning semantic morphemes, 3) building a co-occurrence matrix, and 4) analyzing network features and clustering topic groups. Results: A total of 635 papers published between 2001 and 2020 were found in databases (Web of Science, CINAHL, RISS, DBPIA, RISS, KISS). Among them, 3,639 words extracted from 366 articles selected according to the conditions were analyzed by text network analysis and topic modeling. The most important keywords were 'exposure', 'fetus', 'hypoglycemia', 'prevention' and 'program'. Six topic groups were identified through topic modeling. The main topics of the study were 'cardiovascular disease' and 'obesity'. Through the topic modeling analysis, six themes were derived: 'cardiovascular disease', 'obesity', 'complication prevention strategy', 'support of breastfeeding', 'educational program' and 'management of GDM'. Conclusion: This study showed that over the past 20 years many studies have been conducted on complications such as cardiovascular diseases and obesity related to gestational diabetes and breastfeeding. In order to prevent complications of gestational diabetes and promote breastfeeding, various nursing interventions, including gestational diabetes management and educational programs for GDM pregnancies, should be developed in nursing fields.

자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구 (Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends)

  • 유소영
    • 정보관리학회지
    • /
    • 제32권1호
    • /
    • pp.153-169
    • /
    • 2015
  • 이 연구에서는 토픽 모델링 결과 해석의 용이성을 위하여, 동적 인용 네트워크를 활용하여 LDA 기반 토픽 모델링의 토픽 수를 설정하고 중복 배치된 주요 키워드를 자아 중심 네트워크 분석을 통해 재배치하여 제시하는 방법을 제안하였다. 'White LED' 두 분야의 논문 데이터를 이용하여 분석한 결과, 동적 인용 네트워크 분석을 통해 형성된 분석대상 문헌집단에 혼잡도에 따른 토픽수를 사용하고 중복 분류된 토픽 내 주요 키워드를 자아중심 네트워크 분석 기법을 적용하여 재배치한 결과가 토픽 간의 중복도가 가장 낮은 것으로 나타났다. 따라서 동적 인용 네트워크 및 자아 중심 네트워크 분석을 적용함으로써 토픽모델링에 의한 분석 결과를 보완하는 다면적인 연구 동향 분석이 가능할 것으로 보인다.

Text Mining 기법을 활용한 항공안전관리 이슈 분석 (Analysis of Aviation Safety Management Issues using Text Mining)

  • 권문진;이장룡
    • 한국항공운항학회지
    • /
    • 제31권4호
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, a total of 2,584 domestic research papers with the keywords "Aviation Safety" and "Aviation Accidents" were subjected to Text Mining analysis. Various text mining techniques, including keyword frequency analysis, word correlation analysis, network analysis, and topic modeling, were applied to examine the research trends in the field of aviation safety. The results revealed a significant increase in research using the keyword "Aviation Safety" since 2015, with over 300 papers published annually. Through keyword frequency analysis, it was observed that "Aircraft" was the most frequently mentioned term, followed by "Drones" and "Unmanned Aircraft." Phi coefficients were calculated for words closely related to "Aircraft," "Aviation," "Drones," and "Safety." Furthermore, topic modeling was employed to identify 12 distinct topics in the field of aviation safety and aviation accidents, allowing for an in-depth exploration of research trends.

Analysis of International Research Trends on Metaverse

  • Mina, Shim
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.453-459
    • /
    • 2022
  • This study attempted to explore the realization and research direction of a successful metaverse environment in the future by analyzing international research trends of the metaverse using topic modeling. A total of 208 papers among WoS and ScienceDirect papers using metaverse as keywords were selected, and quantitative frequency analysis and topic modeling were performed. As a result, it was confirmed that research has rapidly increased after 2022. The main keywords of the research topics were 'second', 'life', 'learning', 'reality', 'metaverse', 'virtual', 'blockchain', 'nft', 'medical', 'avatar', etc. The topic keywords 'Second life & Education' and 'Virtual Reality & Medical' accounted for a large proportion of 57%, followed by 'Blockchain & Cryptocurrency', 'Avatar & Interaction', and 'Sensing and Device'. As a result of semantic analysis, current metaverse research is focused on application and utilization, and research on underlying technologies and devices is also active. Therefore, it is necessary to identify the commonalities and differences between domestic and foreign studies, and to study the application method considering the domestic environment. In addition, new jurisprudence research is more necessary along with predicting new problems. It is expected that the results of study will provide the right research direction for domestic researchers in the era of digital transformation and contribute to the realization of a digital society.

2000년 이후 국내 한의학 암 관련 연구 동향 분석 - Latent Dirichlet Allocation 기반 토픽 모델링 및 연관어 네트워크 분석 (Cancer Research Trends in Traditional Korean Medical Journals since 2000 - Topic Modeling Using Latent Dirichlet Allocation and Keyword Network Analysis)

  • 배겨레
    • 대한한방내과학회지
    • /
    • 제43권6호
    • /
    • pp.1075-1088
    • /
    • 2022
  • Objectives: The aim of this study is to analyze cancer research trends in traditional Korean medical journals indexed in the Korea Citation Index since 2000. Methods: Cancer research papers published in traditional Korean medical journals were searched in databases from inception to October 2022. The numbers of publications by journal and by year were descriptively assessed. After natural language processing, topic modeling (based on Latent Dirichlet allocation) and keyword network analysis were conducted. Results: This research trend analysis involved 1,265 papers. Six topics were identified by topic modeling: case reports on symptom management, literature reviews, experiments on apoptosis, herbal extract treatments of breast carcinoma cell lines, anti-proliferative effects of herbal extracts, and anti-tumor effects. Keyword network analysis found that the effects of herbal medicine were assessed in clinical and experimental studies, while acupuncture was mainly mentioned in clinical reports. Conclusions: Cancer research papers in traditional Korean medical journals have contributed to evidence-based medicine. Further experimental studies are needed to elucidate the effects of on different hallmarks of cancer. Rigorous clinical studies are needed to support clinical guidelines.