• Title/Summary/Keyword: Research Lifecycle

Search Result 190, Processing Time 0.038 seconds

Consideration of Relations between PLM(Product Lifecycle Management) and Systems Engineering (PLM(Product Lifecycle Management)과 시스템엔지니어링과의 관계 고찰)

  • Park, Jung-Yong
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.175-178
    • /
    • 2004
  • This paper introduces the concept and market status of PLM, then analyses PLM with an SEview I focus on relations beween SE and PLM. I propose some research topics about integration of SE and PLM and I expect growth of PLM market be a good chance of SE territorial expansion and marketing.

  • PDF

Conceptual Study of the Application Software Manager Using the Xlet Model in the Nuclear Fields (원자력 관점에서의 Xlet 모델을 이용한 응용 소프트웨어 관리자 개념 연구)

  • Joon-Koo Lee;Hee-Seok Park;Heui-Youn Park;In-Soo Koo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.59-65
    • /
    • 2003
  • In order to reduce the cost of software maintenance including software modification, we suggest the object oriented program with checking the version of application program using the Java language and the technique of executing the downloaded application program via network using the application manager. In order to change the traditional scheduler to the application manager we have adopted the Xlet concept in the nuclear fields using the network. In usual Xlet means a Java application that runs on the digital television receiver. The Java TV Application Program Interface(API) defines an application model called the Xlet application lifecycle. Java applications that use this lifecycle model are called Xlets. The Xlet application lifecycle is compatible with the existing application environment and virtual machine technology. The Xlet application lifecycle model defines the dialog(protocol) between an Xlet and its environment

  • PDF

Applying PLM Approach for Sustainable New Product Development in Fashion Industry (PLM 관점의 지속가능패션 신제품 개발에 대한 연구)

  • Chun, Eunha;Han, Jinghe;Ko, Eunju
    • Fashion & Textile Research Journal
    • /
    • v.20 no.1
    • /
    • pp.34-49
    • /
    • 2018
  • Sustainability in fashion pertains to all stages within the product lifecycle, starting with the procurement of raw materials and ending with the disposal of the product. To clarify, the Lifecycle Management (LCM) views the Triple Bottom Line (TBL) from the perspective of a product's lifecycle. Sustainable products are identified based on their lifecycle, causing public attention to turn towards Product Lifecycle Management (PLM). As of now, PLM is largely known to have a strong impact on New Product Development (NPD). As such, the objective of this research is to study how PLM-based sustainable NPD models, when applied to the fashion industry, can produce a wide understanding of sustainable fashion products from a variety of angles. In order to achieve the research objective, this study did a selective case study on 20 sustainable fashion brands; conducted 1:1 in-depth interviews with 24 fashion experts, including both sustainable and non-sustainable experts; and took part in participant observation of 5 sustainable fashion brands. The results of the study indicate that there are specific conditions that must be met at each stage of production for the development of sustainable products by fashion brands. However, due to the lack of technological skills and the dearth of sustainability experts within the organization, management, monitoring and systematic collection of data is not properly implemented - leading to problems with the quantification of crucial data. This study aims to further forward the debate regarding the development of sustainable fashion products and its future implications.

Lifecycle and Requirements for Digital Collection Management of Thai Theses and Dissertations

  • Jareonruen, Yuttana;Tuamsuk, Kulthida
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.3
    • /
    • pp.52-64
    • /
    • 2019
  • This research was aimed at studying the situation, problems, and requirements for digital collection lifecycle management of Thai theses and dissertations. The mixed research method used was composed of: (1) Study of the problem and situation in which the qualitative method was applied. The research site covered 10 higher education institutions where the Thailand Digital Collection (TDC) project is operated. The informants were key administrative officers of the TDC project of each institution. In-depth and structured interviews were conducted on an individual basis to obtain the most accurate answers. (2) Study of requirements based on the quantitative research method to survey the requirements for the digital collection management system for Thai theses and dissertations from 84 purposively-selected TDC project officers and 527 end users selected by accidental sampling, totaling 611 samples. Research findings are as follow: (1) The study of the situation and problems of digital collection lifecycle management shows that Thai higher institutions systematically manage their digital collection. The management lifecycle is consistent with the Guidance documents for lifecycle management of ETDs, which included seven steps: program planning, creation, submission, and ingestion, access and retrieval of digital objects, archiving and preservation, evaluation and assessment, interoperation (creation of institutional collaboration), and development of link data. (2) The study of requirements for digital collection management of Thai theses and dissertations shows five system requirements: acquisition and gathering, digitization, metadata standards, management of rights, and storage and retrieval, all of which are at M (mandatory) and D (desirable) levels.

Lifecycle Health Assessment Model for Sustainable Healthy Buildings

  • Lee, Sungho;Lim, Chaeyeon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2014
  • A system to analyze, assess and manage the health performance of resources and spaces throughout the project lifecycle shall be established to ensure sustainable healthy buildings. Decisions made in the planning, design, construction, and operation and management (O&M) phases must help sustain the health performance of buildings at the level specified by clients or the relevant laws. For this reason, it is necessary to develop a model to ensure the consistent management of performance, as such performance varies according to the decisions made by project participants in each phase. The purpose of this research is to develop a Lifecycle Health Assessment Model (LHA) for sustainable healthy buildings. The developed model consists of four different modules: the Health-friendly Resources Database (HRDB) module, which provides health performance data regarding resources and spatial elements; the Lifecycle Health-performance Tree (LHT) module, which analyzes the hierarchy of spatial and health impact factors; the Health Performance Evaluation (HPE) Module; and the Lifecycle Health Management Module, which analyzes and manages changes in health performances throughout the lifecycle. The model helps ensure sustainable health performances of buildings.

RFID Applications in Product Lifecycle Management (PLM) (제품 라이프 사이클 관리에서 RFID 응용에 관한 연구)

  • Jun, Hong-Bae
    • IE interfaces
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2006
  • This study introduces an overall framework for RFID applications in product lifecycle management(PLM). PLM is a new strategic approach to manage product related information efficiently over the whole product lifecycle. Recently, with emerging technologies such as radio frequency identification(RFID), global positioning system(GPS), and wireless communication, PLM provides a new environment that enables us to gather and analyze product lifecycle information, and make decisions on several issues without spatial and temporal constrains. However, a PLM system just provides us with new opportunities to gain the PLM system, first and foremost, it is necessary to look into its overall framework in the viewpoint of hardware, software, and business model. For this purpose, in this study, first, we introduce the technical framework of the new PLM environment with the concept of extended RFID system, called product embedded information device(PEID). Then, for each lifecycle phase such as beginning of life(BOL), middle of life(MOL), and end of life(EOL), we explore several research problems that become highlighted under the new PLM environment.

Influence of Climate Change on the Lifecycle of Construction Projects at Gaza Strip

  • El-Sawalhi, Nabil;Mahdi, Mahdi
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • There is a high confidence based on scientific evidence that climate is changing over time. Now climate change is considered as one of the challenges facing the construction industry. As no project is risk free and climate change has a strong impact on the different phases of the construction project lifecycle. This research aimed at providing a platform of knowledge for the construction management practitioners about the impacts of climate change on the construction projects lifecycle, identify the most dangerous climate change factors on the construction project lifecycle, and identify the most affected phase by climate change factors through the construction projects lifecycle. The study depended on the opinions of civil engineers who have worked in the construction projects field among the reality of Gaza Strip. Questionnaire tool was adopted as the main research methodology in order to achieve the desired objectives. The questionnaire included 127 factors in order to obtain responses from 88 construction practitioners out of 98 representing 89.79% response rate about the influence of climate change on the generic lifecycle of construction projects. The results deduced that the most significant influence on the construction project lifecycle was related to the extreme weather events, rainfall change, and temperature change respectively. There was a general agreement between the respondents that the most affected phase by temperature, rainfall, and extreme weather events is the execution phase. The results also asserted with a high responses scale on the need to alternative procedures and clear strategies in order to face the climate change within construction industry.

Automated Detection Technique for Suspected Copyright Infringement Sites

  • Jeong, Hae Seon;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4889-4908
    • /
    • 2020
  • With the advances in Information Technology (IT), users can download or stream copyrighted works, such as videos, music, and webtoons, at their convenience. Thus, the frequency of use of copyrighted works has increased. Consequently, the number of unauthorized copies and sharing of copyrighted works has also increased. Monitoring is being conducted on sites suspected of conducting copyright infringement activities to reduce copyright holders' damage due to unauthorized sharing of copyrighted works. However, suspected copyright infringement sites respond by changing their domains or blocking access requests. Although research has been conducted for improving the effectiveness of suspected copyright infringement site detection by defining suspected copyright infringement sites' response techniques as a lifecycle step, there is a paucity of studies on automation techniques for lifecycle detection. This has reduced the accuracy of lifecycle step detection on suspected copyright infringement sites, which change domains and lifecycle steps in a short period of time. Thus, in this paper, an automated detection technique for suspected copyright infringement sites is proposed for efficient detection and response to suspected copyright infringement sites. Using our proposed technique, the response to each lifecycle step can be effectively conducted by automatically detecting the lifecycle step.

Risk Analysis and Hazard Control Process for Vital Train Control Systems (바이탈 열차제어시스템의 리스크 분석 및 헤저드 제어방법)

  • Hwang, Jong-Gyu;Jo, Hyun-Jeong;Yoon, Yong-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.951-952
    • /
    • 2006
  • Railway signaling systems are so vital to ensure the safe operation of railroad and the assurance and demonstration of the safety is so important. The safety management process shall consist of a number of phases and activities, which are linked to form the safety life-cycle. The basic processes of safety management and safety activity throughout the lifecycle are 'risk analysis' and 'hazard control'. The safety managements and activities for the two kinds of aspects are implemented throughout the whole steps of system lifecycle. The risk analyses and hazard controls like those are needed, these activities have to be carried out through the whole of system lifecycle.

  • PDF

Analyses of Expert Group on the 4th Industrial Revolution: The Perspective of Product Lifecycle Management (4차 산업혁명에 관한 전문가그룹 분석: 제품수명주기관리의 관점에서)

  • Wongeun Oh;Injai Kim
    • Journal of Service Research and Studies
    • /
    • v.10 no.4
    • /
    • pp.89-100
    • /
    • 2020
  • The smart factory is an important axis of the 4th industrial revolution. Smart factory is a system that induces the maximum efficiency and effectiveness of production using the IoT and intelligent sensing systems. The product lifecycle management technique is a method that can actively reflect the consumer's requirements in the smart factory and manage the entire process from the consumer to the post management. There have been many studies on product lifecycle management, but studies on how to organize product lifecycle management knowledge domains in preparation for the era of the 4th industrial revolution were insufficient. This study analyzed the opinions of a group of experts preparing for the 4th industrial revolution in terms of product lifecycle management. The impact of the 4th industrial revolution on the detailed knowledge areas of product lifecycle management was investigated. The changes in product lifecycle management were summarized using a qualitative data analysis technique for a group of experts. Based on the opinions of experts, the product lifecycle management, which consists of a total of 30 detailed knowledge areas, was prepared to supplement or prepare for the 4th industrial revolution. This study investigates changes in product lifecycle management in preparation for the 4th industrial revolution in the knowledge domain of the existing defined product life cycle management. In future research, it is necessary to redefine the knowledge domain of product life cycle management suitable for the era of the 4th industrial revolution and investigate the perception of experts. Considering the social culture and technological change factors of the 4th industrial revolution, the scope and scope of product life cycle management can be newly defined.