• Title/Summary/Keyword: Research Information Systems

Search Result 12,220, Processing Time 0.044 seconds

Bitcoin Price Forecasting Using Neural Decomposition and Deep Learning

  • Ramadhani, Adyan Marendra;Kim, Na Rang;Lee, Tai Hun;Ryu, Seung Eui
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.81-92
    • /
    • 2018
  • Bitcoin is a cryptographic digital currency and has been given a significant amount of attention in literature since it was first introduced by Satoshi Nakamoto in 2009. It has become an outstanding digital currency with a current market capitalization of approximately $60 billion. By 2019, it is expected to have over 5 million users. Nowadays, investing in Bitcoin is popular, and along with the advantages and disadvantages of Bitcoin, learning how to forecast is important for investors in their decision-making so that they are able to anticipate problems and earn a profit. However, most investors are reluctant to invest in bitcoin because it often fluctuates and is unpredictable, which may cost a lot of money. In this paper, we focus on solving the Bitcoin forecasting prediction problem based on deep learning structures and neural decomposition. First, we propose a deep learning-based framework for the bitcoin forecasting problem with deep feed forward neural network. Forecasting is a time-dependent data type; thus, to extract the information from the data requires decomposition as the feature extraction technique. Based on the results of the experiment, the use of neural decomposition and deep neural networks allows for accurate predictions of around 89%.

A Case Study on the Information Systems Audit of a Bank (은행 정보시스템 감사에 관한 사례 연구)

  • Hwang, Gyeong-Tae;Kim, Song-Ju
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.467-476
    • /
    • 2002
  • Importance of Information Systems in banking industry is higher than that of other industries. This study, based on a case study of a bank, analyzes the current status of information systems (IS) audit and proposes future directions in the area of IS control and audit. Major problems identified in the study include deficiency of IS and audit process, and inability of audit function to improve IS process. In addition, deficiency of staffing level and investment in R&D, and lack of competency and independence of audit staff are identified. In order to solve the problems, the following directions were proposed proper division of functions among audit related departments, utilization of outside audit function, and adoption of CSA, CAAT, career path program, risk-based audit approach. The results of the studs will provide valuable implications to banks and companies in other industries. Also the research framework employed in the study can be utilized in the future research in IS control and audit.

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

DaHae: Japanese Morphological Analyzer for Japanese to Korean Machine Translation (DaHae: 일한 기계번역을 위한 일본어 형태소 분석기)

  • Yuh, Sang-Hwa;Jung, Han-Min;Chang, Won;Kim, Tae-Wan;Hwang, Do-Sam;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.195-207
    • /
    • 1995
  • 일본어는 한자, 히라가나, 가다가나 등 다양한 종류의 문자를 사용하며 이들의 혼용 비율이 매우 높아 띄어쓰기를 하지 않아도 문서의 가독성을 유지한다. ICOT 사전, EDR 사전, ATLAS I/JK사전 등 기존의 전자 사전에서 복합 자종의 표제어가 차지하는 비율(한자+히라가나의 표제어 제외)은 평균 8.8%로 그 수가 매우 작다. 따라서, 문장 내에서 자종의 변화는 단어를 구분하는 하나의 delimiter로 이용될 수 있다. 본 시스템에서는 형태소 분석의 전단계로 전처리기를 두어 자종정보(character type information)에 의한 fragment 분리 및 예외 단어, 정형표현 처리를 수행하며 각 fragment 의 형태소 분석 방법을 제시한다. 형태소 분석기는 전처리기의 처리 결과를 입력받아 각각의 fragment를 전처리기가 제시한 분석 방법에 따라 분석하여 입력 문장의 가능한 모든 분석을 추출한다. 이 방법은 불필요한 사전 탐색과 접속 체크 회수를 줄여 분석 성능을 향상시킨다.

  • PDF

GripLaunch: a Novel Sensor-Based Mobile User Interface with Touch Sensing Housing

  • Chang, Wook;Park, Joon-Ah;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2006
  • This paper describes a novel way of applying capacitive sensing technology to a mobile user interface. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensing system is carefully designed and installed underneath the housing of the mobile device to capture the information of the user's grip-pattern. The captured data is then recognized by dedicated recognition algorithms. The feasibility of the proposed user interface system is thoroughly evaluated with various recognition tests.

Methodology for Deriving Technical Information Based on Stakeholder Requirements - Focused on 4th Industry Nanosensor Case (이해관계자 요구사항 기반 기술정보 도출 방법론 - 나노 센서 사례)

  • Gi, Wan Wook;Kim, Kwang Soo;Hong, Dae Geun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • For the purpose of technology planning and R&D strategy, this research developed a methodology for deriving technical information based on stakeholder requirements using natural language processing technology. The requirements are decomposed into semantic information based on grammar rules, and then the requirement information based technology information can be derived by linking with the three technical information extracted from the patent.

Development of a Knowledge-Based Travel Information System (지식기반 관광정보시스템의 개발)

  • 김선욱
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.2
    • /
    • pp.51-56
    • /
    • 2003
  • Traditional travel information systems provide us with comprehensive information and internet-based travel information systems (IBTIS) with useful information. However, they suffer from limited access to the system, and a lack of flexibility for user requirements. In order to overcome these problems, this research introduces a knowledge-based expert system approach. As a case study, a Knowledge-based Expert System for guiding a New Zealand tour (KEGUNZ) has been developed to suggest highly user-oriented travel plans efficiently in New Zealand. KEGUNZ has been implemented using EXSYS, an expert system shell.

  • PDF