Since the beginning of open-door policy, China has been making rapid annual growth with an average 10% economic development. And due to this rapid growth, cargo volumes via ports have been also rapidly increased, and accordingly, current China government has intensively invested in port development. Further, this development project is significantly big scale, compared with those project which Korea and Japan have. Thus, China is beginning to threaten Korean ports, especially Busan port which try to be a hub port in Northeast Asia. For this reason, it has been very important issue for Korea and Busan port to investigate or analyze Chinese ports based on empirical data. Especially, although various studies related to Shanghai and Hong Kong have been conducted, the competitiveness of overall Chinese major ports has been little studied. In this paper, we analyzed competitiveness level of eight Chinese ports with capabilities as container terminal, based on reliable sources. From data analysis, eight Chinese ports were classified into four groups according to competitiveness level. Rankings among four clusters based on competitiveness level are cluster(Hone Kong), cluster C(Shanghai), cluster A(Qingdao, Tianjin, and Yantian) and cluster D(Dalian, Shekou, and Xiamen).
The recent economic crisis not only reduces the profit of department stores but also incurs the significance losses caused by the increasing late-payment rate of credit cards. Under this pressure, the scope of credit prediction needs to be broadened from the simple prediction of whether this customer has a good credit or not to the accurate prediction of how much profit can be gained from this customer. This study classifies the delinquent customers of credit card in a Korean department store into homogeneous clusters. Using this information, this study analyzes the repayment patterns for each cluster and develops the credit prediction system to manage the delinquent customers. The model presented by this study uses Kohonen network, which is one of artificial neural networks of data mining technique, to cluster the credit delinquent customers into clusters. Cox proportional hazard model is also used, which is one of survival analysis used in medical statistics, to analyze the repayment patterns of the delinquent customers in each cluster. The presented model estimates the repayment period of delinquent customers for each cluster and introduces the influencing variables on the repayment pattern prediction. Although there are some differences among clusters, the variables about the purchasing frequency in a month and the average number of installment repayment are the most predictive variables for the repayment pattern. The accuracy of the presented system leaches 97.5%.
A probability identification matrix of acidophilic Streptomyces was constructed. The phenetic data of the strains were derived from numerical classification described by Seong et al. The minimum number of diagnostic characters was determined using computer programs for calculation of different separation indices. The resulting matrix consisted of 25 clusters versus 53 characters. Theoretical evaluation of this matrix was achieved by estimating the chuster overlap and the identification scores for the Hypothetical Median Organisms (HMO) and for the representatives of each cluster. Cluster overlap was found to be relatively small. Identification scores for the HMO and the randomly selected representatives of each cluster were satisfactory. The matrix was assessed practically by applying the matrix to the identification of unknown isolates. Of the unknown isolates, 71.9% were clearly identified to one of eight clusters. The numerical classification data was also used to design a selective isolation medium for antibiotic-producing organisms. Four chemical substances including 2 antibiotics were determined by the DLACHAR program as diagnostic for the isolation of target organisms which have antimicrobial activity against Micrococcus luteus. It was possible to detect the increased rate of selective isolation on the synthesized medium. Theresults show that the numerical phenetic data can be applied to a variety of purposes, such as construction of identification matrix and selective isolation medium for acidophilic antinomycetes.
본 연구의 목적은 관광행동에 따른 여행상품속성의 차이를 살펴봄으로써 여행업계가 더 주력해야 할 여행상품을 판매하기 위한 마케팅 전략을 제시하는 것에 도움을 주고자 하는 것이다. 본 연구를 위해 군집분석과 ANOVA분석이 이용되었는데, 군집분석 결과 4개의 군집으로 나타났다. '합리적 관광형', '약한 과시적 관광형', '가치적 관광형'과 '과시적 가치적 관광형'으로 분류되었다. ANOVA분석 결과 여행서비스와 오락을 제외한 교통 숙박시설, 관광매력물, 쇼핑, 식사에서는 관광행동에 있어 군집들이 차이를 보이는 것으로 나타났다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권3호
/
pp.976-990
/
2020
The k-means algorithm is widely used in academia and industry due to easy and simple implementation, enabling fast learning for complex datasets. However, k-means struggles to classify datasets without prior knowledge of specific domains. We proposed the repulsive k-means (RK-means) algorithm in a previous study to improve the k-means algorithm, using the repulsive force concept, which allows deleting unnecessary cluster centroids. Accordingly, the RK-means enables to classifying of a dataset without domain knowledge. However, three main problems remain. The RK-means algorithm includes a cluster repulsive force offset, for clusters confined in other clusters, which can cause cluster locking; we were unable to prove RK-means provided optimal convergence in the previous study; and RK-means shown better performance only normalize term and weight. Therefore, this paper proposes the advanced RK-means (ARK-means) algorithm to resolve the RK-means problems. We establish an initialization strategy for deploying cluster centroids and define a metric for the ARK-means algorithm. Finally, we redefine the mass and normalize terms to close to the general dataset. We show ARK-means feasibility experimentally using blob and iris datasets. Experiment results verify the proposed ARK-means algorithm provides better performance than k-means, k'-means, and RK-means.
This paper explores a fundamental study of acquiring the users' KANSEI information regarding the recognition of shape models. Since there are many differences such as background differences and knowledge differences among users, they will produce different evaluations based on their KANSEI even when an identical shape model is presented. Cluster analysis is proved to be available for catching a group tendency and for constructing a mapping relation between a description of the shape model and the HANSEl database. In order to investigate an analogical relation and a mutual influence in our consciousness, first, we made a questionnaire that asked subjects to represent images having different colors and shape cones by using 4 pairs of adjectives (KANSEI words). Next, based on the cluster analysis of the questionnaire using a fuzzy set theory, we proposed a hypothesis showing how the analogical relation and the mutual influence work in our mind while viewing the shape models. Furthermore, how the properties of KANSEI depend on their descriptions was also investigated by virtue of the cluster analysis. This work will be valuable to construct a personal KANSEI database regarding the Shape Model Processing System.
Galaxy morphology is involved complex effects of both secular and non-secular evolution of galaxies. Although it is a final product of a galaxy evolution, it may give a clue for the process that the galaxy suffer. Galaxy clusters are the sites where the most massive galaxies are found, and the most dramatic merger histories are embedded. Morphology study in nearby universe, e.g. Virgo cluster, is well established, but for clusters at z ~ 0.1 it is only focused on bright galaxies due to observational limits. Our optical deep imaging of 14 Abell clusters at z = 0.014 - 0.16 using IMACS f/2 on a Magellan Badde 6.5-m telescope and MegaCam on a 3.8-m CFHT enable to classify detailed morphology. For the galaxies in our data, we investigated their morphology with several criteria related to secular or merger related evolution. Our research on detailed morphology of thousands of galaxies through deep imaging would give a general census of cluster galaxies and help to estimate the evolution of cluster galaxies.
기계학습 알고리즘은 기준 함수를 채택하여 데이터를 처리하고 학습 모델을 유도한다. 군집분석에서 사용하는 기준 함수는 어떤 형태로든지 선호성을 내포하게 되고 이를 통해 유사한 데이터끼리 묶어 준 후 이를 구성하는 변수와 값들을 특정하여 군집을 정의하게 된다. 군집분석에서 사용하는 카테고리 유용도와 분할 유용도 점수가 군집분석 결과물에 어떤 영향을 주는지를 파악하고 이들이 결과에 어떤 편향성으로 이어지는지를 분석한다. 본 연구는 군집분석에 사용되는 기준 함수의 특성에 따라 결과에 미치는 영향을 파악하기 위해 여러 데이터 세트를 이용해 실험하고 결과를 평가한다.
Pongamia (Pongamia pinnata L.) as a source of non-edible oil, is potential tree species for biodiesel production. For several reasons, both technical and economical, the potential of P. pinnata is far from being realized. The exploitation of genetic diversity for crop improvement has been the major driving force for the exploration and ex situ/in situ conservation of plant genetic resources. However, P. pinnata improvement for high oil and seed production is not achieved because of unsystematic way of tree improvement. Performance of P. pinnata planted by Karnataka Forest Department was assessed based on yield potential by collecting 157 clones out of 264 clones established by Karnataka Forest Department research wing under different research circles/ranges. It was evident that the all the seed and pod traits were significantly different. Further, selection of superior germplasm based on oil and pod/seed parameters was achieved by application of Mahalanobis statistics and Tocher's technique. On the basis of D2 values for all possible 253 pairs of populations the 157 genotypes were grouped into 28 clusters. The clustering pattern showed that geographical diversity is not necessarily related to genetic diversity. Cluster means indicated a wide range of variation for all the pod and seed traits. The best cluster having total oil content of more than 34.9% with 100 seed weight of above 125 g viz. Cluster I, II, III, IX, XV, XIX, XXI, XXIII, XXVI and XXVII were selected for clonal propagation.
SCORM에서 학습 자원은 공유 가능 콘텐츠 객체 또는 하나 이상의 애셋(asset)으로 구성된다. 이러닝 환경에서 애셋을 신속하게 검색하고 재사용할 수 있는 저장 방법이 필요하지만 아직 관련된 연구가 거의 없다. 본 논문에서는 클러스터에 기반을 둔 애셋의 저장 방법을 제안하고 수학적으로 정형화하여 정의하였다. 또한, 애셋을 평가하는 기준과 각 애셋을 평가하는 절차를 제시하였다. 실험을 통하여 제안한 클러스터저장 방법에 기반을 둔 검색이 텍스트 카테고리화에 기반한 검색보다 처리시간과 정확도 측면에서 성능이 우수함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.