• Title/Summary/Keyword: ResNet50

Search Result 119, Processing Time 0.023 seconds

Two-phase flow pattern online monitoring system based on convolutional neural network and transfer learning

  • Hong Xu;Tao Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4751-4758
    • /
    • 2022
  • Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.

Efficient Fixed-Point Representation for ResNet-50 Convolutional Neural Network (ResNet-50 합성곱 신경망을 위한 고정 소수점 표현 방법)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Recently, the convolutional neural network shows high performance in many computer vision tasks. However, convolutional neural networks require enormous amount of operation, so it is difficult to adopt them in the embedded environments. To solve this problem, many studies are performed on the ASIC or FPGA implementation, where an efficient representation method is required. The fixed-point representation is adequate for the ASIC or FPGA implementation but causes a performance degradation. This paper proposes a separate optimization of representations for the convolutional layers and the batch normalization layers. With the proposed method, the required bit width for the convolutional layers is reduced from 16 bits to 10 bits for the ResNet-50 neural network. Since the computation amount of the convolutional layers occupies the most of the entire computation, the bit width reduction in the convolutional layers enables the efficient implementation of the convolutional neural networks.

A Study on Improving Facial Recognition Performance to Introduce a New Dog Registration Method (새로운 반려견 등록방식 도입을 위한 안면 인식 성능 개선 연구)

  • Lee, Dongsu;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.794-807
    • /
    • 2022
  • Although registration of dogs is mandatory according to the revision of the Animal Protection Act, the registration rate is low due to the inconvenience of the current registration method. In this paper, a performance improvement study was conducted on the dog face recognition technology, which is being reviewed as a new registration method. Through deep learning learning, an embedding vector for facial recognition of a dog was created and a method for identifying each dog individual was experimented. We built a dog image dataset for deep learning learning and experimented with InceptionNet and ResNet-50 as backbone networks. It was learned by the triplet loss method, and the experiments were divided into face verification and face recognition. In the ResNet-50-based model, it was possible to obtain the best facial verification performance of 93.46%, and in the face recognition test, the highest performance of 91.44% was obtained in rank-5, respectively. The experimental methods and results presented in this paper can be used in various fields, such as checking whether a dog is registered or not, and checking an object at a dog access facility.

Feasibility of Deep Learning-Based Analysis of Auscultation for Screening Significant Stenosis of Native Arteriovenous Fistula for Hemodialysis Requiring Angioplasty

  • Jae Hyon Park;Insun Park;Kichang Han;Jongjin Yoon;Yongsik Sim;Soo Jin Kim;Jong Yun Won;Shina Lee;Joon Ho Kwon;Sungmo Moon;Gyoung Min Kim;Man-deuk Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.949-958
    • /
    • 2022
  • Objective: To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty (PTA). Materials and Methods: Forty patients (24 male and 16 female; median age, 62.5 years) with dysfunctional native AVF were prospectively recruited. Digital sounds from the AVF shunt were recorded using a wireless electronic stethoscope before (pre-PTA) and after PTA (post-PTA), and the audio files were subsequently converted to mel spectrograms, which were used to construct various deep convolutional neural network (DCNN) models (DenseNet201, EfficientNetB5, and ResNet50). The performance of these models for diagnosing ≥ 50% AVF stenosis was assessed and compared. The ground truth for the presence of ≥ 50% AVF stenosis was obtained using digital subtraction angiography. Gradient-weighted class activation mapping (Grad-CAM) was used to produce visual explanations for DCNN model decisions. Results: Eighty audio files were obtained from the 40 recruited patients and pooled for the study. Mel spectrograms of "pre-PTA" shunt sounds showed patterns corresponding to abnormal high-pitched bruits with systolic accentuation observed in patients with stenotic AVF. The ResNet50 and EfficientNetB5 models yielded an area under the receiver operating characteristic curve of 0.99 and 0.98, respectively, at optimized epochs for predicting ≥ 50% AVF stenosis. However, Grad-CAM heatmaps revealed that only ResNet50 highlighted areas relevant to AVF stenosis in the mel spectrogram. Conclusion: Mel spectrogram-based DCNN models, particularly ResNet50, successfully predicted the presence of significant AVF stenosis requiring PTA in this feasibility study and may potentially be used in AVF surveillance.

Comparison of Image Classification Performance in Convolutional Neural Network according to Transfer Learning (전이학습에 방법에 따른 컨벌루션 신경망의 영상 분류 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1387-1395
    • /
    • 2018
  • Core algorithm of deep learning Convolutional Neural Network(CNN) shows better performance than other machine learning algorithms. However, if there is not sufficient data, CNN can not achieve satisfactory performance even if the classifier is excellent. In this situation, it has been proven that the use of transfer learning can have a great effect. In this paper, we apply two transition learning methods(freezing, retraining) to three CNN models(ResNet-50, Inception-V3, DenseNet-121) and compare and analyze how the classification performance of CNN changes according to the methods. As a result of statistical significance test using various evaluation indicators, ResNet-50, Inception-V3, and DenseNet-121 differed by 1.18 times, 1.09 times, and 1.17 times, respectively. Based on this, we concluded that the retraining method may be more effective than the freezing method in case of transition learning in image classification problem.

Development of ResNet-based WBC Classification Algorithm Using Super-pixel Image Segmentation

  • Lee, Kyu-Man;Kang, Soon-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC. A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis. Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%. Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field. WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.

Effect of Shading Treatments on Photosynthetic Activity of Adenophora triphylla var. japonicum (차광처리가 잔대의 광합성 활성에 미치는 영향)

  • Kim, Jeong-Woon;Yoon, Jun-Hyuck;Jeon, Kwon-Seok;Chung, Jae-Min;Jung, Hye-Ran;Cho, Min-Gi;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.93-99
    • /
    • 2012
  • This study was conducted to investigate photosynthetic characteristics of two-year-old of Adenophora triphylla var. japonicum grown under control (full sunlight) and three different shading treatment (25, 50, and 75% shading treatment). Total chlorophyll contents like chlorophyll a and b content had not significant difference among treatments. Net photosynthetic rate of control and 25% treatment were higher than 50% and 75% treatment. Seedlings grown under full sunlight showed the highest photosynthetic activity such as photosynthetic rate, stomatal conductance and intercellular $CO_2$ concentration except for water use efficiency which was relative higher under 50% and 75% treatment.

Fashion Category Oversampling Automation System

  • Minsun Yeu;Do Hyeok Yoo;SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • In the realm of domestic online fashion platform industry the manual registration of product information by individual business owners leads to inconvenience and reliability issues, especially when dealing with simultaneous registrations of numerous product groups. Moreover, bias is significantly heightened due to the low quality of product images and an imbalance in data quantity. Therefore, this study proposes a ResNet50 model aimed at minimizing data bias through oversampling techniques and conducting multiple classifications for 13 fashion categories. Transfer learning is employed to optimize resource utilization and reduce prolonged learning times. The results indicate improved discrimination of up to 33.4% for data augmentation in classes with insufficient data compared to the basic convolution neural network (CNN) model. The reliability of all outcomes is underscored by precision and affirmed by the recall curve. This study is suggested to advance the development of the domestic online fashion platform industry to a higher echelon.

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.