There is a growing interest in facial age estimation because many applications require age estimation techniques from facial images. In order to estimate the exact age of a face, a technique for extracting aging features from a face image and classifying the age according to the extracted features is required. Recently, the performance of various CNN-based deep learning models has been greatly improved in the image recognition field, and various CNN-based deep learning models are being used to improve performance in the field of facial age estimation. In this paper, age estimation performance was compared by learning facial features based on various CNN-based models such as AlexNet, VGG-16, VGG-19, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152. As a result of experiment, it was confirmed that the performance of the facial age estimation models using ResNet-34 was the best.
In this paper, we compare and analyze the classification performance of deep learning algorithm Convolutional Neural Network(CNN) ac cording to ensemble generation and combining techniques. We used several CNN models(VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, GoogLeNet) to create 10 ensemble generation combinations and applied 6 combine techniques(average, weighted average, maximum, minimum, median, product) to the optimal combination. Experimental results, DenseNet169-VGG16-GoogLeNet combination in ensemble generation, and the product rule in ensemble combination showed the best performance. Based on this, it was concluded that ensemble in different models of high benchmarking scores is another way to get good results.
International Journal of Computer Science & Network Security
/
v.21
no.2
/
pp.198-204
/
2021
Glioma is one of the common types of brain tumors starting in the brain's glial cell. These tumors are classified into low-grade or high-grade tumors. Physicians analyze the stages of brain tumors and suggest treatment to the patient. The status of the tumor has an importance in the treatment. Nowadays, computerized systems are used to analyze and classify brain tumors. The accurate grading of the tumor makes sense in the treatment of brain tumors. This paper aims to develop a classification of low-grade glioma and high-grade glioma using a deep learning algorithm. This system utilizes four transfer learning algorithms, i.e., AlexNet, GoogLeNet, ResNet18, and ResNet50, for classification purposes. Among these algorithms, ResNet18 shows the highest classification accuracy of 97.19%.
Digitalization due to COVID-19 has rapidly developed artificial intelligence-based voice recognition technology. However, this technology causes unfair social problems, such as race and gender discrimination if datasets are biased against some groups, and degrades the reliability and security of artificial intelligence services. In this work, we compare and analyze accuracy-based unfairness in biased data environments using VGGNet (Visual Geometry Group Network), ResNet (Residual Neural Network), and MobileNet, which are representative CNN (Convolutional Neural Network) models of artificial intelligence. Experimental results show that ResNet34 showed the highest accuracy for women and men at 91% and 89.9%in Top1-accuracy, while ResNet18 showed the slightest accuracy difference between genders at 1.8%. The difference in accuracy between genders by model causes differences in service quality and unfair results between men and women when using the service.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.559-561
/
2022
인공지능 시대에 들어서면서 개인 맞춤형 환경을 제공하기 위하여 사람의 감정을 인식하고 교감하는 기술이 많이 발전되고 있다. 사람의 감정을 인식하는 방법으로는 얼굴, 음성, 신체 동작, 생체 신호 등이 있지만 이 중 가장 직관적이면서도 쉽게 접할 수 있는 것은 표정이다. 따라서, 본 논문에서는 정확도 높은 얼굴 감정 식별을 위해서 Convolution Block Attention Module(CBAM)의 각 Gate와 Residual Block, Skip Connection을 이용한 Identity- CBAM Module을 제안한다. CBAM의 각 Gate와 Residual Block을 이용하여 각각의 표정에 대한 핵심 특징 정보들을 강조하여 Context 한 모델로 변화시켜주는 효과를 가지게 하였으며 Skip-Connection을 이용하여 기울기 소실 및 폭발에 강인하게 해주는 모듈을 제안한다. AI-HUB의 한국인 감정 인식을 위한 복합 영상 데이터 세트를 이용하여 총 6개의 클래스로 구분하였으며, F1-Score, Accuracy 기준으로 Identity-CBAM 모듈을 적용하였을 때 Vanilla ResNet50, ResNet101 대비 F1-Score 0.4~2.7%, Accuracy 0.18~2.03%의 성능 향상을 달성하였다. 또한, Guided Backpropagation과 Guided GradCam을 통해 시각화하였을 때 중요 특징점들을 더 세밀하게 표현하는 것을 확인하였다. 결과적으로 이미지 내 표정 분류 Task에서 Vanilla ResNet50, ResNet101을 사용하는 것보다 Identity-CBAM Module을 함께 사용하는 것이 더 적합함을 입증하였다.
License plate recognition plays a key role in intelligent transportation systems. Therefore, it is a very important process to efficiently detect the number and character areas. In this paper, we propose a method to effectively detect license plate number area by applying deep learning and semantic image segmentation algorithm. The proposed method is an algorithm that detects number and text areas directly from the license plate without preprocessing such as pixel projection. The license plate image was acquired from a fixed camera installed on the road, and was used in various real situations taking into account both weather and lighting changes. The input images was normalized to reduce the color change, and the deep learning neural networks used in the experiment were Vgg16, Vgg19, ResNet18, and ResNet50. To examine the performance of the proposed method, we experimented with 500 license plate images. 300 sheets were used for learning and 200 sheets were used for testing. As a result of computer simulation, it was the best when using ResNet50, and 95.77% accuracy was obtained.
In this paper we introduce two experimental results from classification of Instagram images and some valuable lessons from them. We have tried some experiments for evaluating the competitive power of Convolutional Neural Network(CNN) in classification of real social network images such as Instagram images. We used AlexNet and ResNet, which showed the most outstanding capabilities in ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2012 and 2015, respectively. And we used 240 Instagram images and 12 pre-defined categories for classifying social network images. Also, we performed fine-tuning using Inception V3 model, and compared those results. In the results of four cases of AlexNet, ResNet, Inception V3 and fine-tuned Inception V3, the Top-1 error rates were 49.58%, 40.42%, 30.42%, and 5.00%. And the Top-5 error rates were 35.42%, 25.00%, 20.83%, and 0.00% respectively.
The purpose of this study is to apply a deep learning model that can distinguish lung perfusion and lung ventilation images in nuclear medicine, and to evaluate the image classification ability. Image data pre-processing was performed in the following order: image matrix size adjustment, min-max normalization, image center position adjustment, train/validation/test data set classification, and data augmentation. The convolutional neural network(CNN) structures of VGG-16, ResNet-18, Inception-ResNet-v2, and SE-ResNeXt-101 were used. For classification model evaluation, performance evaluation index of classification model, class activation map(CAM), and statistical image evaluation method were applied. As for the performance evaluation index of the classification model, SE-ResNeXt-101 and Inception-ResNet-v2 showed the highest performance with the same results. As a result of CAM, cardiac and right lung regions were highly activated in lung perfusion, and upper lung and neck regions were highly activated in lung ventilation. Statistical image evaluation showed a meaningful difference between SE-ResNeXt-101 and Inception-ResNet-v2. As a result of the study, the applicability of the CNN model for lung scintigraphy classification was confirmed. In the future, it is expected that it will be used as basic data for research on new artificial intelligence models and will help stable image management in clinical practice.
Journal of the Korea Society of Computer and Information
/
v.25
no.5
/
pp.11-18
/
2020
This study proposes a technique for the determination of outlet blockage using deep learning in a conveyor system. The proposed method aims to apply the best model to the actual process, where we train various CNN models for the determination of outlet blockage using images collected by CCTV in an industrial scene. We used the well-known CNN model such as VGGNet, ResNet, DenseNet and NASNet, and used 18,000 images collected by CCTV for model training and performance evaluation. As a experiment result with various models, VGGNet showed the best performance with 99.03% accuracy and 29.05ms processing time, and we confirmed that VGGNet is suitable for the determination of outlet blockage.
Journal of the Korea Society of Computer and Information
/
v.26
no.5
/
pp.1-8
/
2021
Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.