• Title/Summary/Keyword: Res Net 101

Search Result 28, Processing Time 0.026 seconds

Transfer Learning for Caladium bicolor Classification: Proof of Concept to Application Development

  • Porawat Visutsak;Xiabi Liu;Keun Ho Ryu;Naphat Bussabong;Nicha Sirikong;Preeyaphorn Intamong;Warakorn Sonnui;Siriwan Boonkerd;Jirawat Thongpiem;Maythar Poonpanit;Akarasate Homwiseswongsa;Kittipot Hirunwannapong;Chaimongkol Suksomsong;Rittikait Budrit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.126-146
    • /
    • 2024
  • Caladium bicolor is one of the most popular plants in Thailand. The original species of Caladium bicolor was found a hundred years ago. Until now, there are more than 500 species through multiplication. The classification of Caladium bicolor can be done by using its color and shape. This study aims to develop a model to classify Caladium bicolor using a transfer learning technique. This work also presents a proof of concept, GUI design, and web application deployment using the user-design-center method. We also evaluated the performance of the following pre-trained models in this work, and the results are as follow: 87.29% for AlexNet, 90.68% for GoogleNet, 93.59% for XceptionNet, 93.22% for MobileNetV2, 89.83% for RestNet18, 88.98% for RestNet50, 97.46% for RestNet101, and 94.92% for InceptionResNetV2. This work was implemented using MATLAB R2023a.

An Android Application to Guide Waste Sorting using a Deep Learning Image Classifier (딥러닝 사진 분류기를 활용한 분리배출 가이드 안드로이드 응용)

  • Kim, So-Yeong;Park, So-Hui;Kim, Min-Ji;Lee, Je-min;Kim, Hyung-Shin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.99-101
    • /
    • 2021
  • 쓰레기 대란, 환경파괴의 상황 속 실제 재활용 쓰레기 가운데 절반 정도만이 재활용되고 있다. 재활용률을 높이기 위해, 올바른 분리배출 방법을 쉽고 편하게 찾을 수 있는 방식이 필요하다. 본 논문에서는 올바른 분리수거를 통해 재활용률을 증진하기 위한 분리수거 분류 서비스를 제안한다. 본 논문은 ResNet-34 모델을 통해 안드로이드 카메라로 촬영한 이미지의 분리배출 클래스를 예측하고 그에 따른 분리배출 가이드를 제공하는 시스템을 설계하였다. 향후 연구에서는 모델의 정확도 향상을 위해 온디바이스와 서버 모델을 분리하고 모델의 개인 맞춤화를 진행할 예정이다.

  • PDF

Analysis of Weights and Feature Patterns in Popular 2D Deep Neural Networks Models for MRI Image Classification

  • Khagi, Bijen;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.177-182
    • /
    • 2022
  • A deep neural network (DNN) includes variables whose values keep on changing with the training process until it reaches the final point of convergence. These variables are the co-efficient of a polynomial expression to relate to the feature extraction process. In general, DNNs work in multiple 'dimensions' depending upon the number of channels and batches accounted for training. However, after the execution of feature extraction and before entering the SoftMax or other classifier, there is a conversion of features from multiple N-dimensions to a single vector form, where 'N' represents the number of activation channels. This usually happens in a Fully connected layer (FCL) or a dense layer. This reduced 2D feature is the subject of study for our analysis. For this, we have used the FCL, so the trained weights of this FCL will be used for the weight-class correlation analysis. The popular DNN models selected for our study are ResNet-101, VGG-19, and GoogleNet. These models' weights are directly used for fine-tuning (with all trained weights initially transferred) and scratch trained (with no weights transferred). Then the comparison is done by plotting the graph of feature distribution and the final FCL weights.

A Study on Similar Trademark Search Model Using Convolutional Neural Networks (합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 유사상표 검색 모형 개발)

  • Yoon, Jae-Woong;Lee, Suk-Jun;Song, Chil-Yong;Kim, Yeon-Sik;Jung, Mi-Young;Jeong, Sang-Il
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.55-80
    • /
    • 2019
  • Recently, many companies improving their management performance by building a powerful brand value which is recognized for trademark rights. However, as growing up the size of online commerce market, the infringement of trademark rights is increasing. According to various studies and reports, cases of foreign and domestic companies infringing on their trademark rights are increased. As the manpower and the cost required for the protection of trademark are enormous, small and medium enterprises(SMEs) could not conduct preliminary investigations to protect their trademark rights. Besides, due to the trademark image search service does not exist, many domestic companies have a problem that investigating huge amounts of trademarks manually when conducting preliminary investigations to protect their rights of trademark. Therefore, we develop an intelligent similar trademark search model to reduce the manpower and cost for preliminary investigation. To measure the performance of the model which is developed in this study, test data selected by intellectual property experts was used, and the performance of ResNet V1 101 was the highest. The significance of this study is as follows. The experimental results empirically demonstrate that the image classification algorithm shows high performance not only object recognition but also image retrieval. Since the model that developed in this study was learned through actual trademark image data, it is expected that it can be applied in the real industrial environment.

A Deep Learning Method for Cost-Effective Feed Weight Prediction of Automatic Feeder for Companion Animals (반려동물용 자동 사료급식기의 비용효율적 사료 중량 예측을 위한 딥러닝 방법)

  • Kim, Hoejung;Jeon, Yejin;Yi, Seunghyun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.263-278
    • /
    • 2022
  • With the recent advent of IoT technology, automatic pet feeders are being distributed so that owners can feed their companion animals while they are out. However, due to behaviors of pets, the method of measuring weight, which is important in automatic feeding, can be easily damaged and broken when using the scale. The 3D camera method has disadvantages due to its cost, and the 2D camera method has relatively poor accuracy when compared to 3D camera method. Hence, the purpose of this study is to propose a deep learning approach that can accurately estimate weight while simply using a 2D camera. For this, various convolutional neural networks were used, and among them, the ResNet101-based model showed the best performance: an average absolute error of 3.06 grams and an average absolute ratio error of 3.40%, which could be used commercially in terms of technical and financial viability. The result of this study can be useful for the practitioners to predict the weight of a standardized object such as feed only through an easy 2D image.

Application of deep learning technique for battery lead tab welding error detection (배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용)

  • Kim, YunHo;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • In order to replace the sampling tensile test of products produced in the tab welding process, which is one of the automotive battery manufacturing processes, vision inspectors are currently being developed and used. However, the vision inspection has the problem of inspection position error and the cost of improving it. In order to solve these problems, there are recent cases of applying deep learning technology. As one such case, this paper tries to examine the usefulness of applying Faster R-CNN, one of the deep learning technologies, to existing product inspection. The images acquired through the existing vision inspection machine are used as training data and trained using the Faster R-CNN ResNet101 V1 1024x1024 model. The results of the conventional vision test and Faster R-CNN test are compared and analyzed based on the test standards of 0% non-detection and 10% over-detection. The non-detection rate is 34.5% in the conventional vision test and 0% in the Faster R-CNN test. The over-detection rate is 100% in the conventional vision test and 6.9% in Faster R-CNN. From these results, it is confirmed that deep learning technology is very useful for detecting welding error of lead tabs in automobile batteries.

Single Shot Detector for Detecting Clickable Object in Mobile Device Screen (모바일 디바이스 화면의 클릭 가능한 객체 탐지를 위한 싱글 샷 디텍터)

  • Jo, Min-Seok;Chun, Hye-won;Han, Seong-Soo;Jeong, Chang-Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • We propose a novel network architecture and build dataset for recognizing clickable objects on mobile device screens. The data was collected based on clickable objects on the mobile device screen that have numerous resolution, and a total of 24,937 annotation data were subdivided into seven categories: text, edit text, image, button, region, status bar, and navigation bar. We use the Deconvolution Single Shot Detector as a baseline, the backbone network with Squeeze-and-Excitation blocks, the Single Shot Detector layer structure to derive inference results and the Feature pyramid networks structure. Also we efficiently extract features by changing the input resolution of the existing 1:1 ratio of the network to a 1:2 ratio similar to the mobile device screen. As a result of experimenting with the dataset we have built, the mean average precision was improved by up to 101% compared to baseline.

Analysis of Infrared Characteristics According to Common Depth Using RP Images Converted into Numerical Data (수치 데이터로 변환된 RP 이미지를 활용하여 공동 깊이에 따른 적외선 특성 분석)

  • Jang, Byeong-Su;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.77-84
    • /
    • 2024
  • Aging and damaged underground utilities cause cavity and ground subsidence under roads, which can cause economic losses and risk user safety. This study used infrared cameras to assess the thermal characteristics of such cavities and evaluate their reliability using a CNN algorithm. PVC pipes were embedded at various depths in a test site measuring 400 cm × 50 cm × 40 cm. Concrete blocks were used to simulate road surfaces, and measurements were taken from 4 PM to noon the following day. The initial temperatures measured by the infrared camera were 43.7℃, 43.8℃, and 41.9℃, reflecting atmospheric temperature changes during the measurement period. The RP algorithm generates images in four resolutions, i.e., 10,000 × 10,000, 2,000 × 2,000, 1,000 × 1,000, and 100 × 100 pixels. The accuracy of the CNN model using RP images as input was 99%, 97%, 98%, and 96%, respectively. These results represent a considerable improvement over the 73% accuracy obtained using time-series images, with an improvement greater than 20% when using the RP algorithm-based inputs.