• Title/Summary/Keyword: Required thermal time

Search Result 312, Processing Time 0.026 seconds

Comparison of Cooling Effects by Body Part to Increase Thermal Comfort (열적 쾌적성 증대를 위한 부위별 냉각 효과 비교)

  • Soyoung Park;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.501-510
    • /
    • 2024
  • This study aimed to compare the cooling effect of specific body parts to increase workers' thermal comfort. The parts to be cooled comprised the head and neck; the coolant was a phase change material. The participants were ten men in their 20s of average size according to the 8th Size Korea. The experiment was conducted under the following conditions: 28.0 ± 0.5℃, 60.0 ± 5.0% RH, and 0.2 ± 0.1m/s. The exercise consisted of participants moving for 15 min at a constant speed of 80 BPM; later, a subjective sensation was performed, and the clothing surface temperature was measured. In doing so, heat, wetness, and discomfort after exercise were confirmed to have increased without a coolant. Significant differences over time appeared only when no coolant was used, showing that thermal comfort decreased. Despite the addition of coolant, the clothing surface temperature gradually increased over time, but it decreased with coolant rather than without it. Therefore, additional coolant areas, a lower temperature, and simultaneous cooling convection were required to improve thermal comfort.

Certification Methodology of Aerospace Materials System (우주항공 재료시스템 품질인증)

  • Lee, Ho-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.13-20
    • /
    • 2007
  • Structural qualification plan (SQP) for aerospace vehicle is based on material certification methodology, which must be approved by certification authority. It is internationally required to use of statistically based material allowables to design aerospace vehicles with aerospace materials. In order to comply with this regulation, it is necessary to establish relatively large amount of database, which increases test costs and time. Recently NASA/FAA develop the new methodology which results in cost, time, and risk reduction, and satisfies the regulation at the same time. This paper summarizes the certification methodology of materials system as a part of structural qualification plan (SQP) of aerospace vehicles and also thermal management of the vehicle system, like thermal protection materials system and thermally conductive material system. Materials design allowable was determined using this method for a carbon/epoxy composite material.

  • PDF

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

A Study on Optimum Conditions Derivation on Thermal Hydrolysis of Food Wastewater and the Applicability of the Thermal Solubilization in Biological Denitrification Process (음폐수의 열가수분해 최적조건 도출과 생물학적 탈질공정에서 열가용화액의 적용 가능성에 관한 연구)

  • Lee, Ki Hee;You, Hee Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • The aim of this research is to derive an optimum operating condition for the thermal solubilization equipment that is employed to increase concentration of soluble organic materials and to assess whether it would be possible to use the waste sludge generated by thermal solubilization reaction as an external carbon source in biological denitrification process. For the purpose, we have constituted a laboratory-size thermal solubilization equipment and have assessed thermal hydrolysis efficiency based on various reaction temperature and reaction time. We have also derived SDNR using the waste sludge generated by thermal solubilization reaction through a batch experiment. As a result of research, the highest thermal hydrolysis efficiency of about 42.8% was achieved at $190^{\circ}C$ of reaction temperature and at 90 minutes of reaction time. And when SDNR was derived using the waste sludge, the value obtained was $0.080{\sim}0.094\;g\;NO_3{^-}-N/g\;MLVSS{\cdot}day$, showing SDNR that is higher than that obtained by the results of existing researches that used common wastewater as an external carbon source. Accordingly, in view of the fact that food wastes vary quite a bit in characteristics based on the area they are generated from and seasonal change, it seems that a flexible operation of thermal solubilization equipment is required through on-going monitoring of food wastes that are imported to food wastes recycling facilities.

Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis (표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출)

  • Lee, Cheonkyu;Jeong, Hyo Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.

Temperature Control of Superheater Steam in Thermal Power Plant (화력발전소의 과열기증기의 온도제어)

  • Shin, Hwi-Beom;Lee, Soon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2006-2011
    • /
    • 2010
  • The superheater in the thermal power plant makes the wet steam into the dry steam with high temperature and high pressure by using the boiler heat. The dry steam pressure rotates the turbine-generator system. The efficiency and life time of the boiler heavily depends on the steam temperature regulation. The steam temperature can be deviated from the reference by the MW demand of the power plant. It is therefore required that the PI(proportional-integral) controller should be robust against the disturbance such as the MW demand. In this paper, the PI controller with the integral state predictor is proposed and applied to regulate the steam temperature of the superheater, and it is compared with the conventional PI controller operated in the thermal power plant in view of control performance.

Experimental Study on the Microencapsulated PCM as a Thermal Storage Medium (미립잠열재를 이용한 축열 특성에 관한 실험적 연구)

  • 이효진;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • Microencapsulated PCM particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane(C$_14H_30, T_m=5.5^{\circ}C$) is capsulated in the core with the melamine of its surface. The size of particles is well-controlled under 10${\mu}{\textrm}{m}$ in the way of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentrations of slurries are prepared for 20wt%, 30wt%, and 40wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose tank whose flow rates are varied by 125cc/min, 250cc/min, and 500cc/min. However, MicroPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MicroPCM particles control its heat transfer in terms of natural convection and conducting to them.

  • PDF

Study on the Subway Platform Thermal Environment for using Natural Energy (자연에너지 활용을 위한 지하철 승강장 열환경에 관한 연구)

  • KIM, Hoe-Ryul;KIM, Dong-Gyu;KUM, Jong-Soo;CHUNG, Yong-Hyun;PARK, Sung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.269-277
    • /
    • 2009
  • Ventilation equipment performs a central role to maintain comfort subway environment. So ventilation equipment of Busan subway line No.1 is required to improve thermal environment. In this study, conditions of thermal environment are presented to improve ventilation equipment at existing subway station platforms by measuring thermal environment of platforms operated ventilation equipment at 14 stations of Busan subway line No.1. AWS of data in comparison with the neighbouring platforms and thermal environment analysis. Thermal environment status of subway platform analysis results are as follows. 1)Daytime platform temperature was higher than outdoor temperature, but night time platform temperature was lower than outdoor temperature. 2)Train wind had effect on improving thermal comfort in platform. 3)When outdoor temperature is below $24^{\circ}C$, inlet air is able to lower than platform temperature. 4)Considering existing ventilation system, night purge systems is useful to improving platform thermal environment.

DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE (히트 파이프가 장착된 정지궤도 위성 패널 열해석 프로그램 개발)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young;Chae, Jong-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.416-421
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat dissipation of electronics units and utilize several heat pipe networks to control the temperatures of units and the satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary design stage so several thousands of nodes of more are utilized in order to perform thermal analysis of panel. Generating a large number of nodes(meshes) of the panel takes time and is tedious work because the mesh can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required in order to generate detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of panel thermal analysis program with ist main modules and its main functions.

  • PDF