• Title/Summary/Keyword: Required thermal time

Search Result 311, Processing Time 0.027 seconds

Design of a Controller for the Heat Capacity of Thermal Storage Systems Using Off-Peak Electricity (축열식 심야전력기기를 위한 축열량 제어기 설계)

  • Lee, Eun-Uk;Yang, Hae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1211-1217
    • /
    • 2001
  • This paper presnts a controller for the heat capacity of thermal storage systems using off-peak electricity which is composed of an identifier using neural networks and a storage time adjuster in order to store exactly the required thermal energy without loss. Since thermal storage systems have nonlinear characteristics and large time constant, even if we predict the heating load accurately, it is very difficult to store exactly the required thermal energy. Thus, in the neural network for the identifier, the adaptive learning rate for high learning speed and bit inputs based on state changes of thermal storage power source are used. Also a hardware for the controller using a microprocessor is developed. The performance of the proposed controller is shown by experiment.

  • PDF

Analysis of Thermal Relaxation Time of Tissues Subject to Pulsed Laser Irradiation (초단파 레이저 조사시 티슈 열완화 시간 분석)

  • Kim, Kyung-Han;Lee, Jae-Hoon;Suh, Jeong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • Two methodologies for predicting thermal relaxation time of tissue subjected to pulsed laser irradiation is introduced by the calculation the optical penetration depth and by the investigation of the temperature diffusion behavior. First approach is that both x-axial and y-axial thermal relaxation times are predicted and they are superposed to achieve the thermal relaxation time (${\tau}_1$) for two-dimensional square tissue model. Another approach to achieve thermal relaxation time (${\tau}_2$) is measuring the time required for local temperature drop until $e^{-1}$ of the maximum laser induced heating.

  • PDF

Development of reduced-order thermal stratification model for upper plenum of a lead-bismuth fast reactor based on CFD

  • Tao Yang;Pengcheng Zhao;Yanan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2835-2843
    • /
    • 2023
  • After an emergency shutdown of a lead-bismuth fast reactor, thermal stratification occurs in the upper Plenum, which negatively impacts the integrity of the reactor structure and the residual heat removal capacity of natural circulation flow. The research on thermal stratification of reactors has mainly been conducted using an experimental method, a system program, and computational fluid dynamics (CFD). However, the equipment required for the experimental method is expensive, accuracy of the system program is unpredictable, and resources and time required for the CFD approach are extensive. To overcome the defects of thermal stratification analysis, a high-precision full-order thermal stratification model based on CFD technology is prepared in this study. Furthermore, a reduced-order model has been developed by combining proper orthogonal decomposition (POD) with Galerkin projection. A comparative analysis of thermal stratification with the proposed full-order model reveals that the reduced-order thermal stratification model can well simulate the temperature distribution in the upper plenum and rapidly elucidate the thermal stratification interface characteristics during the lead-bismuth fast reactor accident. Overall, this study provides an analytical tool for determining the thermal stratification mechanism and reducing thermal stratification.

Development of Thermal Mass Flow Meter (열전달 질량유량계 개발)

  • Chi, Daesung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.118-122
    • /
    • 1999
  • Thermal mass flow meter was developed using principle of convective heat transfer. The advantage of thermal mass flow meter is measuring mass flow directly, therefore, it is not required to use densitometer or temperature/pressure and DP gages. The final accuracy of this thermal mass flow meter is $\pm1.0{\%}$ or better, reproducibility is $\pm0.2{\%}$, and the response time is 600 ms. The thermal mass flow meter was developed from a single point to multi-points (maximum is 9 points), and the number of points is determined according to desired accuracy and size of piping/duct. Since this thermal mass flow meter adopted microprocessor based design, it is intrinsically accurate, self-error detectable, and has self-diagnosis function. The applications of this thermal mass flow meter are for measurement and control of HVAC air flow, other gas flow, and liquid flow.

  • PDF

New Technology with Porous Materials: Progress in the Development of the Diesel Vehicle Business

  • Ohno, Kazushige
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.497-506
    • /
    • 2008
  • The long time of twenty years has passed since Diesel Particulate Filter (DPF) was proposed before the practical use. The main factors that DPF has been put to practical use in this time, are the same time proposal of the evaluation method of SiC porous materials linked to he performance on the vehicle, and that the nature of thermal shock required for the soot regeneration (combustion of soot) in the DPF is different from the conventional requirement for the rather rapid thermal shock. For the requirements, these includ demonstrating utmost the characteristic of SiC's high thermal conductivity, and overcoming the difficulty of thermal expansion of SiC-DPF by dividing the filter into segments binding with the cement of lower Young's modulus, and the innovation of technology around the diesel exhaust system such as Common-Rail system. As the results of these, the cumulative shipments of SiC-DPF have reached about 5 million, and it goes at no claim in the market.

A Study on the High Temperature Properties (Compressive Strength, Expansion) of Synthetic Sand using Domestic Silica Sand (Mooryang Silica Sand) (국내규사(國內硅砂)를 사용(使用)한 합성사(合成砂)의 고온성질(高溫性質) (압축강도(壓縮强度), 팽장(膨張)) 에 관(關)한 연구(硏究))

  • Yun, Byung-Guk;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.2 no.4
    • /
    • pp.2-8
    • /
    • 1982
  • The behavior of sand and mold at high temperatures was generally agreed to importantly affect the quality of castings made. By changing water content through 2,4,6 and 8%, and bentonite content through 5,7,9 and 11%, specimens have been made according to the respective composition. Specimens have been subjected to hot compressive strength and thermal expansion at 400, 600, 800 and $1000^{\circ}C$ respectively. The results obtained were as follows ; 1. At each temperature, thermal expansion decreased and hot compressive strength increased with the increase in water content. 2. After thermal expansion was peaked at approximately $1000^{\circ}C$ the contraction and maximum hot compressive strength appeared. 3. At each temperature, maximum hot compressive strength appeared 2%, 4,6% and 8% water content for 7%, 9% and 11% bentonite content respectively. 4. When 2% $H_2O$ was added, though bentonite content was increased, hot compressive strength did not rarely change. 5. Until the thermal expansion was completed the required time was 15-18 minutes at $400^{\circ}C$ and $600^{\circ}C$, and 10-13 minutes at $800^{\circ}C$. At $1000^{\circ}C$, the required time was 7-9 minutes in order to gain the maximum expansion, after that, contraction proceeded during 3-4 minutes before expansion was completed.

  • PDF

A Study on Thermal Load Management in a Deep Geological Repository for Efficient Disposal of High Level Radioactive Waste

  • Jongyoul Lee;Heuijoo Choi;Dongkeun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.469-488
    • /
    • 2022
  • Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300-1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.

Design and control of the precision heat actuator using thermoelectric device (열전소자를 이용한 정밀 열구동기구의 설계 및 제어)

  • 서장렬;김선민;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.395-398
    • /
    • 1997
  • In the modem manufacturing system, to achieve the unmanned automation, the stability of accuracy is required through a long working period. The thermal deformation of precision machine is predominant in this long time stability. While grinding slender and long workpiece at cylindrical grinding machine, we support workpiece using steadies to prevent the vibration of workpiece. The thermal deformation of the machine by grinding and internal heat source cause processing errors, so the steadies for compensating the thermal deformation in real time are strongly needed. In order to compensate these thermal deformation and grinding processing errors, the device to determine the precise positioning having the stroke of 10.mu.m is necessary. This paper suggests design and make the device to determine the precise positioning using thermoelectric device, to investigate the control characteristics and presents the heat actuator will be very useful in machine tool.

  • PDF

Thermal analysis of High speed train Eddy current brake system (고속전철 와전류 제동장천의 마그네트 열해석)

  • Jung, S.J.;Kim, D.H.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.397-400
    • /
    • 2001
  • In eddy, current brake system(BS), high current may flow for increase of braking force within a short time. Therefore, the estimation of thermal characteristics for BS is required. In this paper, the thermal characteristics of eddy-current brake for the Korean high speed train are analyzed by using 2-dimensional Finite Element Method (2D-FEM) and measured.

  • PDF

Thermal dehydration tests of FLiNaK salt for thermal-hydraulic experiments

  • Shuai Che;Sheng Zhang;Adam Burak;Xiaodong Sun
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1091-1099
    • /
    • 2024
  • Fluoride-salt-cooled High-temperature Reactor (FHR) is a promising nuclear reactor technology. Among many challenges presented by the molten fluoride salts is the corrosion of salt-facing structural components. Higher moisture contents, in the FLiNaK (LiF-NaF-KF, 46.5-11.5-42 mol%) salt, aggravate intergranular corrosion and pitting for the given alloys. Therefore, several thermal dehydration tests of FLiNaK salt were performed with a batch size suitable for thermal-hydraulic experiments. Thermogravimetric Analysis (TGA) was performed for the three constituent fluoride salts individually. Preliminary thermal dehydration plans were then proposed for NaF and KF salts based on the TGA curves. However, the dehydration process may not be required for LiF since its low mass loss (<1.3 wt%). To evaluate the performance of these thermal dehydration plans, a batch-scale salt dehydration test facility was designed and constructed. The preliminary thermal dehydration plans were tested by varying the heating rates, target temperature, and holding time. The sample mass loss data showed that the high temperatures (>500 ℃) were necessary to remove a significant amount of moisture (>1 wt%) from NaF salt, while relatively low temperatures (around 300 ℃) with a long holding time (>10 h) were sufficient to remove most of the moisture from KF salt.