• 제목/요약/키워드: Repulsive Force

검색결과 135건 처리시간 0.022초

수평구동형 정전반발력 마이크로액추에이터 (Laterally-Driven Electrostatic Repulsive-Force Microactuator)

  • 이기방;조영호
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.424-433
    • /
    • 2001
  • We present a new electrostatic repulsive-force microactuator using a lateral repulsive force induced by an asymmetric distribution of electrostatic field. The lateral repulsive force has been characterized by a simple analytical equation, derived from a finite element simulation. A set of repulsive force polysilicon microactuators has been designed and fabricated by a 4-mask surface-micromachining process. Static and dynamic micromechanical behavior of the fabricated microactuators has been measured at the atmospheric pressure for a varying bias voltage. The static displacement of the fabricated microactuator, proportional to the square of the DC bias voltage, is obtained as 1.27 $\mu\textrm{m}$ for the DC bias voltage of 140V. The resonant frequency of the repulsive-force microactuator increases from 11.7 kHz to 12.7 kHz when the DC bias voltage increases from 60V to 140V. The measured quality-factor varies from 12 to 13 for the bias volatge range of 60V∼140V. The characteristics of the electrostatic repulsive-force have been discussed and compared and compared with those of the conventional electrostatic attractive-force.

반발식 자기 베어링의 응용으로서 고온 초전도체의 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of the High Temperature Superconductor as an Application of the Repulsive Type Magnetic Bearing)

  • 유제환;임윤철
    • Tribology and Lubricants
    • /
    • 제13권2호
    • /
    • pp.52-59
    • /
    • 1997
  • An experimental study is presented for the characteristics of the high temperature superconductor as an application of the repulsive type magnetic bearing. A ring shaped YBCO type superconductor and Neodium permanent magnets are employed for the experiment. For the case of field cooling, superconductor shows strong repulsive force, which is due to the Meissner effect, as the gap between the superconductor and the magnet gets closer. The repulsive force variation with respect to the gap change shows hysterisis characteristics. The area of the loop of the hysterisis curve represents the dissipation of energy, which reveals that the magnetic bearing with superconductor has large damping. The effect of the initial gap and the magnetic flux density on the repulsive force is analyzed experimentally and the static stiffness variation is calculated from the measured repulsive force variation. The relative sliding velocity between the superconductor and the magnet has little effect on the repulsive force which is quite different from the usual sliding element bearing. As the initial gap for the field cooling becomes larger, the maximum repulsive force at the minimum gap increases and approaches to the value for the case of zero field cooling.

수평 구동형 정전 반발력 마이크로엑추에이터의 Creeping 유동 모델에 의한 공기 감쇠 (Air Damping Evaluation for Laterally Driven Electrostatic Repulsive-Force Microactuators Using Creeping Flow Model)

  • 이기방;서영호;조영호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권11호
    • /
    • pp.581-588
    • /
    • 2001
  • This paper presents theoretical and experimental study on the quality-factor of the laterally oscillated electrostatic microactuator, driven by a lateral repulsive-force generated by the asymmetry of planar electric field. The quality-factor of the repulsive-force microactuator using a creeping flow model of the ambient air is evaluated. By filling the simulation results of damping force, we evaluate the dimensionless damping force, $\alpha$, thereby obtaining an analytical damping force, F, in the form of $F=\mu\; \alphaUL,\; where\; \mu,$ U and L denote the air viscosity, the velocity and the characteristic length of the movable electrodes. The measured quality-factor increases from 12 to 13 for the DC bias voltage increased from 60V to 140v. The theoretical quality-factor estimated from the creeping flow model increases from 14.9 to 18.7. Characteristics of quality-factor of the repulsive-force microactuator have been discussed and compared with those of the conventional attractive-force microactuator.

  • PDF

장애물의 상대속도를 반영한 포텐셜필드 기반 무인항공기 충돌회피 (Collision Avoidance for UAV using Potential Field based on Relative Velocity of Obstacles)

  • 안승규;이동진
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.47-53
    • /
    • 2018
  • In this paper, we investigate a collision avoidance algorithm for unmanned aerial vehicles using potential field based on the relative velocity of obstacles. The potential field consists of the attraction force and the repulsive force that are generated for the target and the obstacles. And the field can be classified into the attractive potential field generated by the target and the repulsive potential field generated by the obstacle, respectively. In this study, we construct an attractive potential field as a function of the distance between the UAV and the target position. On the other hand, a repulsive potential field is created by a function of distance and the relative velocity of the obstacle with respect to the UAV. The proposed potential field based collision avoidance algorithm is evaluate through simulations.

다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석 (Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes)

  • 이지호;김영재;나진배;최석진;장재영;황영진;김진섭;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Approximate k values using Repulsive Force without Domain Knowledge in k-means

  • Kim, Jung-Jae;Ryu, Minwoo;Cha, Si-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.976-990
    • /
    • 2020
  • The k-means algorithm is widely used in academia and industry due to easy and simple implementation, enabling fast learning for complex datasets. However, k-means struggles to classify datasets without prior knowledge of specific domains. We proposed the repulsive k-means (RK-means) algorithm in a previous study to improve the k-means algorithm, using the repulsive force concept, which allows deleting unnecessary cluster centroids. Accordingly, the RK-means enables to classifying of a dataset without domain knowledge. However, three main problems remain. The RK-means algorithm includes a cluster repulsive force offset, for clusters confined in other clusters, which can cause cluster locking; we were unable to prove RK-means provided optimal convergence in the previous study; and RK-means shown better performance only normalize term and weight. Therefore, this paper proposes the advanced RK-means (ARK-means) algorithm to resolve the RK-means problems. We establish an initialization strategy for deploying cluster centroids and define a metric for the ARK-means algorithm. Finally, we redefine the mass and normalize terms to close to the general dataset. We show ARK-means feasibility experimentally using blob and iris datasets. Experiment results verify the proposed ARK-means algorithm provides better performance than k-means, k'-means, and RK-means.

자석의 반발력을 이용한 원격조종용 촉각궤환장치 (Tactile feedback device using repulsive force of the magnets for teleoperation)

  • 안인석;문용모;이정훈;박종오;이종원;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper we developed a tactile feedback device using repulsive force of magnets. The force of the tactile feedback device was derived from the Maxwell's stress method by using the concept of magnetic charge. Magnetic repulsive force is linear function with respect to current and nonlinear to displacement. Experimental data shows these characteristics. To compensate the fact that the presented tactile feedback device can not be controlled by close loop control, we developed a simulation model which predicts output displacement and force by using Runge-Kutta method. And, this paper evaluated the presented tactile feedback device and compared it with commercial tactile feedback devices.

  • PDF

비홀로노믹 모바일 매니퓰레이터의 영공간 투영에 기반한 충돌 회피 (Collision Avoidance Based on Null Space Projection for a Nonholonomic Mobile Manipulator)

  • 김계진;윤인환;송재복
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.32-39
    • /
    • 2022
  • Since the mobile platform and the manipulator mounted on it move at the same time in a mobile manipulator, the risk of mutual collision increases. Most of the studies on collision avoidance of mobile manipulators cannot be applied to differential drive type mobile platforms or the end-effector tends to deviate from the desired trajectory for collision avoidance. In this study, a collision avoidance algorithm based on null space projection (CANS) that solves these two problems is proposed. To this end, a modified repulsive force that overcomes the non-holonomic constraints of a mobile platform is generated by adding a virtual repulsive force in the direction of its instantaneous velocity. And by converting this repulsive force into a repulsive velocity and applying it to the null space, the end-effector of the robot avoids a collision while moving along its original trajectory. The proposed CANS algorithm showed excellent performance through self-collision avoidance tests and door opening tests.

흡착입자간 상호작용에 따른 흡착등온선 패턴 (Adsorption Isotherm Patterns According to the Interactions Between Adsorbed Particles)

  • 김철호
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.462-468
    • /
    • 2013
  • We study and describe-from the point of view of the interactions of the adsorbed particles-three types of the adsorption isotherms, namely, Langmuir type adsorption isotherms, phase transition type adsorption isotherms, and adsorption limited type adsorption isotherms, which are observed by experiments. By introducing and using a one dimensional statistical occupancy model, we derived analytical adsorption isotherms for the no force, the attractive force, and the repulsive force exerted on the other adsorbed particles. Our derived adsorption isotherms qualitatively pretty well agree with the experimental results of the adsorption isotherms. To specify each adsorption type, Langmuir type adsorption is a phenomenon that occurs with no forces between the adsorbed particles, phase transition type adsorption is a phenomenon that occurs with the strong attractive forces between the adsorbed particles, and adsorption limited type adsorption is a phenomenon that occurs with the repulsive forces between the adsorbed particles. The theoretical analysis-only using fundamental thermodynamics and occupancy statistics though-qualitatively quite well explains the experimental results.

영구자석의 반발력을 이용한 자기부상레일의 해석 및 설계 (Analysis and Design of a Magnetic Levitation Rail using the Repulsive Force of Permanent Magnets)

  • 이강원;송창섭
    • 한국자기학회지
    • /
    • 제9권1호
    • /
    • pp.48-54
    • /
    • 1999
  • 자기부상형 리니어 모터와 비접촉 구동에 의한 크린룸 환경용 물류 운송장치를 개발하기 위하여 접촉 없이 완전하게 부상되는 자기부상레일을 개발하고자 하였다. 영구자석의 같은 극을 마주보게 배치할 때 생성되는 작용력에 의한 부상 특성을 파악하고, 해석을 통하여 외력 변화에 강인하고 부상위치의 변화가 작은 반발부상형 레일을 설계·제작하였다. 개발된 부상 레일은 고정자석 양면에서 서로 반발되게 자석을 배열하여 부상하는 구조로 상호 반발력에 의하여 평형이 이루어지기 때문에 부상체에는 횡력만 작용하게 된다. 부상계에서 발생되는 횡력은 부상체의 부상 중심 위치에 반발력을 이용한 보조자석을 설치하여 제어하고자 하였다.

  • PDF