DOI QR코드

DOI QR Code

Laterally-Driven Electrostatic Repulsive-Force Microactuator

수평구동형 정전반발력 마이크로액추에이터

  • Published : 2001.03.01

Abstract

We present a new electrostatic repulsive-force microactuator using a lateral repulsive force induced by an asymmetric distribution of electrostatic field. The lateral repulsive force has been characterized by a simple analytical equation, derived from a finite element simulation. A set of repulsive force polysilicon microactuators has been designed and fabricated by a 4-mask surface-micromachining process. Static and dynamic micromechanical behavior of the fabricated microactuators has been measured at the atmospheric pressure for a varying bias voltage. The static displacement of the fabricated microactuator, proportional to the square of the DC bias voltage, is obtained as 1.27 $\mu\textrm{m}$ for the DC bias voltage of 140V. The resonant frequency of the repulsive-force microactuator increases from 11.7 kHz to 12.7 kHz when the DC bias voltage increases from 60V to 140V. The measured quality-factor varies from 12 to 13 for the bias volatge range of 60V∼140V. The characteristics of the electrostatic repulsive-force have been discussed and compared and compared with those of the conventional electrostatic attractive-force.

Keywords

References

  1. Fan, L.-S., Tai, Y.-C. and Muller, R.S., 1988, 'IC-Processed Electrostatic Micromotors,' Proc. IEDM, San Francisco, CA, U.S.A., pp. 666-669 https://doi.org/10.1109/IEDM.1988.32901
  2. Mehregany, M., Bart, S.F., Tavrow, LS., Lang, J.H., Senturia, S.D. and Schlecht, M.F., 1990, 'A Study of Three Microfabricated Variable-Capacitance Motors,' Sensors and Actuators, Vol. A21-23, pp. 173-179 https://doi.org/10.1016/0924-4247(90)85033-Z
  3. Tang, W. C., Nguyen, T.-C H. and Howe, R. T., 1989, 'Laterally Driven Polysilicon Resonant Microstructures,' Sensors and Actuators, Vol. A20, pp. 25-32 https://doi.org/10.1016/0250-6874(89)87098-2
  4. Tang, W.C., Lim, M.G. and How, R.T., 1992, 'Electrostatic Comb Drive Levitation and Control Method,' J. Microelectromech. Sys., Vol.1, No.4, pp. 170-178
  5. 1997, Maxwell solver, Electrostatic Package V.4.20, Ansoft Corp., 4 Station Square, 660 Commerce Court Building, Pittsburgh, Pa, 15219
  6. Lee, K.B., Yoon, J.-B., Kang, M.-S., Cho, Y.-H., Youn, S.-K. and Kim, C.-H., 1996, 'A Surface-micromachined Tunable Micro- gyroscope,' IEEE Conference on Emerging Technologies and Factory Automation (ETFA96), Hawaii, pp. 498-502
  7. White, F.M., 1974, Viscous Fluid Flow, McGraw-Hill
  8. 1997, Fluent users guide, FLUENT inc.
  9. Tang, W.C.-K., 1990, 'Electrostatic Comb Drive for Resonant Sensor and Actuator Applications,' P.h.D Thesis, Electrical Engineering and Computer Sciences, The University of California, Berkeley
  10. Lee, K.B. and Cho, Y.-H., 1998, 'A Triangular Electrostatic Comb Array for Micromechanical Resonant Frequency Tuning,' Sensors and Actuators, A70, pp. 112-117 https://doi.org/10.1016/S0924-4247(98)00122-8
  11. Cho, Y.-H., Kwak, B. M., Pisano, A. P. and Howe, R. T., 1994, 'Slide film damping in laterally driven microstructures,' Sensors and Actuators, A40, pp. 31-39 https://doi.org/10.1016/0924-4247(94)85027-5
  12. Kuelnel, W., 1995, 'Modeling of the mechanical behaviour of a differential capacitor acceleration sensor,' Sensors and Actuators, A 48, pp. 101-108 https://doi.org/10.1016/0924-4247(94)00983-O
  13. Lee, K.B. and Cho, Y.-H., 1996, 'Electrostatic Control of Mechanical Quality Factors for Surface Micromachined Lateral Resonators,' J. Micromech. Microeng, Vol. 6 pp. 426-430 https://doi.org/10.1088/0960-1317/6/4/009