• 제목/요약/키워드: Reproductive biology

검색결과 1,523건 처리시간 0.031초

Alternative ICSI Treatments in Human IVF-ET Program

  • Jun, Jin-Hyun;Song, Sang-Jin;Lim, Chun-Kyu;Kim, Jeong-Wook;Song, In-Ok;Song, Jin-Hong;You, Keun-Jae;Kang, Inn-Soo
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 1999년도 제38차 추계 학술대회
    • /
    • pp.55.1-55.1
    • /
    • 1999
  • PDF

생쥐 난자의 효율적인 냉동보존 방법 확립을 위한 연구 (Development of Effective Cryopreservation Method for Mouse Oocytes)

  • 최수진;김수경;김지선;조재원;전진현;변혜경
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권1호
    • /
    • pp.75-81
    • /
    • 2004
  • Objective: The purpose of this study was to evaluate the efficacy and effect of various cryopreservation method on the survival and the cytoskeletal stability of metaphase II mouse oocyte. Methods: Mouse ovulated oocytes were collected and cryopreserved by a modified slow-freezing method with 1.5 M 1, 2-propanediol (PrOH)+0.1 M sucrose or by vitrification using cryo loop and EM grid with 40% ethylene glycol+0.6 M sucrose. Four hours after thawing, intact oocytes were fixed and stained with fluorescein isothiocyanate (FITC)-conjugated monoclonal anti-$\beta$-tubulin antibody to visualize spindle and propidium iodide (PI) to visualize chromosome. Spindle morphology was classified as follows: normal (barrel-shaped), slightly and absolute abnormal (multipolar or absent). Results: Survival rate of the frozen-thawed oocytes in vitrification group was significantly higher than that of slow-freezing group (62.7% vs. 24.4%, p<0.01). Vitrification with cryo loop showed significantly higher survival rate than that with EM grid (67.7% vs. 53.5%, p<0.05). On the other hand, proportion of normal spindle and chromosome configurations of the frozen-thawed oocytes between two vitrification group was not significantly different. Conclusion: For mouse ovulated oocytes, vitrification with cryo loop may be a preferable procedure compared to slow-freezing method. Further study should be needed to investigate developmental competency of frozen-thawed mouse oocytes.

Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (Capra hircus)

  • Zheng, X.;Hao, X.Y.;Chen, Y.H.;Zhang, X.;Yang, J.F.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.758-763
    • /
    • 2012
  • As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus) cells, a full-length cDNA was cloned (GenBank accession number JF714970) and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF) from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box). Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.

Heat Stress Causes Aberrant DNA Methylation of H19 and lgf-2r in Mouse Blastocysts

  • Zhu, Jia-Qiao;Liu, Jing-He;Liang, Xing-Wei;Xu, Bao-Zeng;Hou, Yi;Zhao, Xing-Xu;Sun, Qing-Yuan
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.211-215
    • /
    • 2008
  • To gain a better understanding of the methylation imprinting changes associated with heat stress in early development, we used bisulfite sequencing and bisulfite restriction analysis to examine the DNA methylation status of imprinted genes in early embryos (blastocysts). The paternal imprinted genes, H19 and Igf-2r, had lower methylation levels in heat-stressed embryos than in control embryos, whereas the maternal imprinted genes, Peg3 and Peg1, had similar methylation pattern in heat-stressed embryos and in control embryos. Our results indicate that heat stress may induce aberrant methylation imprinting, which results in developmental failure of mouse embryos, and that the effects of heat shock on methylation imprinting may be gene-specific.

동결보존이 생쥐 난소 조직 내 Heat Shock Protein 90의 발현에 미치는 영향 (Effect of Cryopreservation on the Heat Shock Protein 90 Expression in Mouse Ovarian Tissue)

  • 이선희;박용석;염혜원;송견지;한상철;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제29권1호
    • /
    • pp.37-44
    • /
    • 2002
  • Objective : Heat shock protein family is related to protective mechanism of cells by environmental changes. This study was performed to evaluate the effect of cryopreservation on the heat shock protein 90 (Hsp90) expression in mouse ovarian tissue. Methods : Cryopreservation of mouse ovarian tissue was carried out by slow freezing method. The mRNA level of Hsp90 expression in both fresh and cryopreserved mouse ovarian tissue was analyzed by RT-PCR. The protein expression of Hsp90 was evaluated by Western blot analysis and immunohistochemistry. Results: The mRNA and protein of Hsp90 were expressed in both fresh and cryopreserved mouse ovarian tissue. The amount of Hsp90 mRNA was increased in cryopreserved ovarian tissue after 60 and 90 minutes after thawing and incubation. The amount of Hsp90 protein was increased in the cryopreserved ovarian tissue after 6 hours of the incubation in Western blot analysis. In immunohistochemical study, Hsp90 protein was localized in cytoplasm of oocytes and granulosa cells. Significant level of immunoreactive Hsp90 protein was detected in theca cells contrast to the weak expression in ovarian epithelial cells. Conclusion: This results showed the increase of Hsp90 expression in both mRNA and protein level in the cryopreserved mouse ovarian tissue. It can be suggested that Hsp90 may play a role in the protective or recovery mechanism against the cell damage during cryopreservaion.

Nanotechnology in reproductive medicine: Opportunities for clinical translation

  • Shandilya, Ruchita;Pathak, Neelam;Lohiya, Nirmal Kumar;Sharma, Radhey Shyam;Mishra, Pradyumna Kumar
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권4호
    • /
    • pp.245-262
    • /
    • 2020
  • In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an indepth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.