• Title/Summary/Keyword: Reproductive Function

Search Result 467, Processing Time 0.054 seconds

Assessment of cryopreserved sperm functions of Korean native brindled cattle (Chikso) from different region research centers of Korea

  • Ma, Lei;Jung, Dae-Jin;Jung, Eun-Ju;Lee, Woo-Jin;Hwang, Ju-Mi;Bae, Jeong-Won;Kim, Dae-Hyun;Yi, Jun Koo;Lee, Sang Moo;Ha, Jae Jung;Kwon, Woo-Sung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.106-115
    • /
    • 2021
  • Sperm cryopreservation is an important method of assisted reproductive techniques and storing genetic resources. It plays a vital role in genetic improvement, livestock industrial preservation of endangered species, and clinical practice. Consequently, the cryopreservation technique is well organized through various studies, especially on Korean native cattle (Hanwoo). However, the cryopreservation technique of Korean native brindled cattle, which is one of the native cattle species in Korea, is not well organized. Therefore, it is necessary to develop a Supplementary Table technique for the cryopreservation of Korean native brindled cattle. For this purpose, it is important to first evaluate the quality of the currently produced cryopreserved sperm of Korean native brindled cattle. In this study, we randomly selected 72 individual Korean native brindled cattle semen samples collected from 8 different region research centers and used them to evaluate sperm functions. We focused on the quality evaluation of cryopreserved Korean native brindled cattle semen following the measurement of motion kinematics, capacitation status, intracellular ATP level, sperm motility, and cell viability. Then, the values of each of the eight groups were derived from various sperm parameters of nine individual samples, including sperm motility, kinematics, cellular motility, and intracellular ATP levels, which were used to compare and evaluate sperm function. Overall, differences in various sperm parameters were observed between most of the research centers. Particularly, the deviations of motility and motion kinematics were high according to the sample. Therefore, we suggest that it is necessary to develop a standard method for the cryopreservation of Korean native brindled cattle semen. We also suggest the need for sperm quality evaluation of the cryopreserved semen of Korean native brindled cattle before using artificial insemination to attain a high fertility rate.

Microplastics in the Marine Environment and Their Impacts on Human Health (해양 환경의 미세 플라스틱과 인간의 건강에 미치는 영향)

  • Bak, Jia;Kang, Hyun Bon;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.442-451
    • /
    • 2021
  • Microplastics are fragments of any type of plastic with a size less than 5 mm. Ocean pollution by microplastics is now a worldwide concern in relation to marine ecosystems and human health. The widespread contamination by microplastics means that they can be ingested by and accumulated in diverse species of wildlife, such as fish, mussels, oysters, clams, and scallops. Once ingested, the microplastics can be observed in the intestines, liver, and kidney, and even in the brain. Seafood is one of the major sources of protein intake in humans; therefore, seafood consumption could be pathway for human microplastics exposure. Accumulating evidence indicates that repeated oral exposure to microplastics induces pathologic and functional changes in the reproductive, cardiac, gastrointestinal, endocrine, and even nervous systems of rodents. Maternal exposure to microplastics during gestation and lactation alters metabolic homeostasis in the offspring. Given that seafood provides more than 20% of the total protein intake by over 310 million people worldwide, a reasonable assumption is that microplastics could be substantially accumulated in the human body and impair physiological function. In this review, we have summarized the current status of microplastics contamination in the ocean, their accumulation and toxicities in marine animals and rodents, their exposure to humans, and their potential impacts on human health.

Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds

  • Nikitkina, Elena V.;Dementieva, Natalia V.;Shcherbakov, Yuri S.;Atroshchenko, Mikhail M.;Kudinov, Andrei A.;Samoylov, Oleg I.;Pozovnikova, Marina V.;Dysin, Artem P.;Krutikova, Anna A.;Musidray, Artem A.;Mitrofanova, Olga V.;Plemyashov, Kirill V.;Griffin, Darren K.;Romanov, Michael N.
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1827-1838
    • /
    • 2022
  • Objective: The semen quality of stallions including sperm motility is an important target of selection as it has a high level of individual variability. However, effects of the molecular architecture of the genome on the mechanisms of sperm formation and their preservation after thawing have been poorly investigated. Here, we conducted a genome-wide association study (GWAS) for the sperm motility of cryopreserved semen in stallions of various breeds. Methods: Semen samples were collected from the stallions of 23 horse breeds. The following semen characteristics were examined: progressive motility (PM), progressive motility after freezing (FPM), and the difference between PM and FPM. The respective DNA samples from these stallions were genotyped using Axiom Equine Genotyping Array. Results: We performed a GWAS search for single nucleotide polymorphism (SNP) markers and potential genes related to motility properties of frozen-thawed semen in the stallions of various breeds. As a result of the GWAS analysis, two SNP markers, rs1141327473 and rs1149048772, were identified that were associated with preservation of the frozen-thawed stallion sperm motility, the relevant putative candidate genes being NME/NM23 family member 8 (NME8), olfactory receptor family 2 subfamily AP member 1 (OR2AP1), and olfactory receptor family 6 subfamily C member 4 (OR6C4). Potential implications of effects of these genes on sperm motility are herein discussed. Conclusion: The GWAS results enabled us to localize novel SNPs and candidate genes for sperm motility in stallions. Implications of the study for horse breeding and genetics are a better understanding of genomic regions and candidate genes underlying stallion sperm quality, and improvement in horse reproduction and breeding techniques. The identified markers and genes for sperm cryotolerance and the respective genomic regions are promising candidates for further studying the biological processes in the formation and function of the stallion reproductive system.

Effects of Bisphenol A and BPA Alternatives on the Nervous System (Bisphenol A와 대체물질들이 신경계에 미치는 영향)

  • Ha Jung Moon;Seung Hyun Lee;Hyun Seung Shin;Eui-Man Jung
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.371-381
    • /
    • 2023
  • Endocrine disrupting chemicals (EDCs), used in a variety of products in modern society, are hormone-like substances that cause various diseases. Humans are exposed to EDCs through their inclusion in pesticides, plastics, cosmetics, detergents, and drugs. Bisphenol A (BPA), one of the representative endocrine disruptors, is an estrogen-like substance that has been widely used commercially in plastic and epoxy resins. BPA is a chemical that can disrupt the endocrine system, leading to reduced reproductive function, obesity, cancer, and neurodevelopmental disorders. Since the adverse health effects of BPA began to be reported the use of BPA has been regulated worldwide. Various alternatives to BPA have been widely used worldwide; representatively, bisphenol S (BPS) and bisphenol F (BPF) are the most commonly used in commercial contexts. BPS and BPF may cause endocrine-disrupting effects like those of BPA due to their similar chemical structures. Recent studies have reported that BPS and BPF disrupt the neurodevelopmental process and cause neurodevelopmental disorders. Therefore, future studies will be required for safety verification of BPA alternatives and the development of new alternatives to BPA for brain health. In this review, we reviewed the effects of BPA and the alternatives, BPS and BPF, on the nervous system.

MiR-188-5p regulates the proliferation and differentiation of goat skeletal muscle satellite cells by targeting calcium/calmodulin dependent protein kinase II beta

  • Jing Jing;Sihuan Zhang;Jinbo Wei;Yuhang Yang;Qi Zheng;Cuiyun Zhu;Shuang Li;Hongguo Cao;Fugui Fang;Yong Liu;Ying-hui Ling
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1775-1784
    • /
    • 2023
  • Objective: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. Methods: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. Results: It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. Conclusion: These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.

Effect of dietary inclusion of Bacillus-based probiotics on performance, egg quality, and the faecal microbiota of laying hen

  • Habeeb Tajudeen;Sang Hun Ha;Abdolreza Hosseindoust;Jun Young Mun;Serin Park;SangIn Park;PokSu Choi;Rafael Gustavo Hermes;Apichaya Taechavasonyoo;Raquel Rodriguez;JinSoo Kim
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.689-696
    • /
    • 2024
  • Objective: Our study examined the impact of propriety blends of Bacillus strain probiotics on the performance, egg quality, and faecal microflora of laying hens. Methods: A total of 183 Institut de selection Animale (ISA) brown laying hens aged 23 weeks with an average body weight of 1,894±72 g were randomly allocated into 3 groups as control (corn-soybean meal based diet, CON), 0.5 g/kg Enterosure probiotics (ET1, 3×108 colony-forming unit [CFU]/kg feed), and 5 g/kg Enterosure probiotics (ET2, 3×109 CFU/kg feed) administered in mashed form. At the completion of each phase hen day egg production (HDEP), average egg weight (AEW), feed intake, and faecal microbiota were evaluated. Results: HDEP and AEW were higher (p<0.05) in the ET2-supplemented diet in phase 3 (week 9 to 12) compared with CON. Egg mass (EM) was higher (p<0.05) in phase 2 at ET2, and also higher (p<0.05) in phase 3 at the ET1 and ET2-supplemented diets compared with CON. Feed conversion ratio was lower (p<0.05) in phase 3 at the ET1 and ET2-supplemented diets, with ET2 being the lowest compared with ET1 and CON. Yolk colour was higher (p<0.05) in the ET-supplemented diets at phase 3 compared with CON. Bifidobacterium spp. was higher (p<0.05) in the ET2- supplemented diet compared with CON in phase 2, while in In phase 3, Lactobacillus spp. and Bifidobacterium spp. were higher (p<0.05) in the ET-supplemented diets compared with CON. Coliforms were lower (p<0.05) in the ET-supplemented diets compared with CON in phase 3. Conclusion: The propriety blends of Bacillus strain probiotics supplements at 0.5 g/kg and 5 g/kg could improve the production and quality of eggs with more significance at 5 g/kg for HDEP, AEW and EM, which was achieved via the increase of beneficial microbiomes such as Lactobacillus spp., Bifidobacterium spp., and the decrease of pathogenic microbiomes like Escherichia coli and Coliforms which was speculated to improve gut barrier function and the reproductive hormone.

The Self-governance of the Commons and the Socio-economic Sustainability of the Jeju Haenyeo Community (제주 해녀 공동체의 공유지 관리 특성과 사회경제적 지속가능성)

  • Jong-Ho Lee;Wonseob Song;Kyung Hee Kwon;Chul-Ki Cho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.458-476
    • /
    • 2023
  • This study analyzes previous research on 'The Self-Governance of the Commons' to overcome 'The Tragedy of the Commons', and derives elements for successful commons management. These factors are compared and analyzed with the social and economic attributes of the Jeju Haenyeo community, a successful community self-governance model. In addition, in the recently changing environment, it is revealed whether this internal community mechanism can be useful in the future. The goal is to reveal what social and economic factors will help the sustainability of the Jeju haenyeo community in the future. As a result of analyzing the internal operating mechanism of the Jeju haenyeo community, the production and distribution system that improves trust and reciprocity, the inherent sense of community, the division of roles between formal and informal organizations, and the institutionalized explicit and implicit norms within the organization served as internal and external strengths of community sustainability. However, the closure of the network, the crisis of productivity, the weakening of homogeneity, and the emergence of new subjects acted as internal and external weaknesses. In conclusion, for the sustainability of the Jeju Haenyeo community, it is necessary to reorganize the reproductive function of labor using the haenyeo school, to maintain clarity on the subject of livelihood and cultural transmission, and guarantee the income of Haenyeo.

Effects of Gestation Length and Birth Weight on Survival Rate in Cloned Korean Native Calves (복제 송아지의 임신 기간과 생시체중이 출생 후 생존율에 미치는 영향)

  • Yang, Byoung-Chul;Im, Gi-Sun;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Nho, Whan-Gook;Kim, Myung-Jick;Yang, Boh-Suck;Lee, Sang-Jin;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This study was performed to investigate the relation between birth weight and survivability on the production of cloned Hanwoo calves. The 580 cloned embryos were transferred into the 293 recipients. The pregnancy rate of the cloned embryos was 72.3% at 50 days after embryo transfer, and then the rate was dramatically decreased. The mean gestation lengths were 287 days in both clone (range of$279{\sim}295$ days) and artificial insemination (AI, range of $255{\sim}293$ days) calves, respectively. The mean birth weight of cloned calves (30.3kg) was significantly higher compared to that of AI calves (23.7kg) (p<0.05). Among the cloned calves, the birth weight was not different in both normal delivery (n=17, 29.9kg) and caesarean section (n=14, 32.3kg). The weight, however, was significantly higher in the clones (n=18, 32.8kg) dead within 175 days than that of the clones (n=11, 28.3kg) alive more than 175 days after birth (p<0.05). Interestingly, all cloned calves weighed <15kg (n=5) or >35kg (n=9) at birth have been dead within 175 days from the date of birth. The causes of death in the cloned calves were premature birth (n=2, 10.0%), abnormal function of lung and liver (n=2, 10.0%), abnormal function of lung (n=4, 20.0%), malformation (n=4, 20.0%), unknown (n=4, 20.0%), and sudden death syndrome (n=4, 20.0%), respectively. Our findings suggest that normal birth weight is one of the most important factors to survive more than 6 months in cloned calves.

The Role of the Endometrium and Embryo in Human Implantation (인간 착상 과정에 자궁내막과 배아의 역할)

  • Jee, Byung-Chul
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Implantation itself is governed by an array of endocrine, paracrine and autocrine modulators, of embryonic and maternal origin. Window of implantation is the unique temporal and spatial expression of factors allows the embryo to implant via signaling, appositioning, attachment, and invasion in a specific time frame of $2{\sim}4$ days. When the embryo has arrived in the uterine cavity, a preprogrammed sequence of events occurs, which involves the production and secretion of a multitude of biochemical factors such as cytokines, growth factors, and adhesion molecules by the endometrium and the embryo, thus leading to the formation of a receptive endometrium. Cytokines such as LIF, CSF-1, and IL-1 have all been shown to play important roles in the cascade of events that leads to implantation. Integrin, L-selectin ligands, glycodelin, mucin-1, HB-EGF and pinopodes are involved in appositioning and attachment. The embryo also produces cytokines and growth factors (ILs, VEGF) and receptors for endometrial signals such as LIF, CSF-1, IGF and HB-EGF. The immune system and angiogenesis play an important role. The usefulness of these factors to assess endometrial receptivity and to estimate the prognosis for pregnancy in natural and artificial cycles remains to be proven. Integrins, pinopodes, glycodelin and LIF (from biopsies) are promising candidates; from uterine flushings, glycodelin and LIF are also candidates. The ideal serum marker is not available, but VEGF, glycodelin and CSF have some clinical implications. Further evaluation that includes larger groups of infertile women and fertile controls are needed to elucidate whether their presence in plasma, flushing fluid, or endometrial samples can be used as some kind of a screening tool to assess endometrial function and prognosis for pregnancy before and after artificial reproductive therapy. A better understanding of their function in human implantation may lead to therapeutic intervention, thereby improving the success rate in reproduction treatment. New molecular techniques are becoming available for measuring both embryonic and endometrial changes prior to and during implantation. The use of predictive sets of markers may prove to be more reliable than a single marker. Ultimately, the aim is to use these tools to increase implantation in artificial cycles and consequently improve live-birth rates.

  • PDF

A Novel Glycine-Rich Region in Sox4 is a Target for the Proteolytic Cleavage in E. coli (전사활성 인자인 Sox4의 단백질 분해효소에 의한 표적 부위에 관한 연구)

  • 허은혜;최주연;장경희;김인경;임향숙
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Sox4, a transcription factor, consists of three functional domains: an HMG-box domain as a DNA binding domain, serine rich region as a transactivation domain and glycine rich region (GRR), an unknown functional domain. Although Sox4 is known to be functionally involved in heart, B-cell and reproductive system development, its physiological function remains to be elucidated. We used pGEX expression system to develop a simple and rapid method for purifying Sox4 protein in suitable forms for biochemical studies of their functions. Unexpectedly, we observed that full-length Sox4 appears to be protease-sensitive during expression and purification in E. coli. To map the protease-sensitive site in Sox4, we generated various constructs with each of functional domains of Sox4 and purified as the GST-Sox4 fusion proteins using glutathione beads. We found that the specific cleavage site for the proteolytic enzyme, which exists in E. coli, is localized within the novel GRR of Sox4. Our study suggest that the GRR of Sox4 may a target for the cellular protease action and this cleavage in the GRR may be involved in regulating physiological function of Sox4. Additionally, our study may provide a useful method for investigating the proteolytic cleavage of the target molecule in E. coli.