• 제목/요약/키워드: Replication protein A

검색결과 324건 처리시간 0.027초

Binding of IciA protein to the dnaA promoter region

  • Kim, Hakjung;Hwang, Deog-Su
    • Journal of Microbiology
    • /
    • 제33권3호
    • /
    • pp.191-195
    • /
    • 1995
  • IciA protein has been shown as an inhibitor for the initiation of E. coli chromosomal DNA replication at oriC. IciA protein binds the AT-rich region in oriC and then blocks the initiation of chromosomal DNA replication. Two binding sites for IciA protein were identified in dnaA gene, encoding the initiator for the E. coli chromosomal replication, promoter region by gel-shift assay and DNase I footprinting, One, named as IciA site I, is located upstream of the dnaA promoter 1P. The other, named as IciA site II, is located downstream of the dnaA promoter 2P. The sequence comparison of the regions protected from the DNase I cleavage did not result in a clear consensus sequence for the binding of IciA protein, suggesting that IciA protein may be a member of multimeric complex dsDNA binding proteins. This study provided information about the binding mode of IciA protein. Even though the IciA site II and IciA binding site in oriC seem to be composed of two IciA binding units, one binding unit is likely enough to cause the binding of IciA protein to the IciA site I. The binding of IciA protein to the dna4 promoter implies that IciA protein may involve not only the control of the initiation of chromosomal DNA replication but also the control of the dna4 gene expression.

  • PDF

Backbone Assignment of the N-terminal Domain of Human Replication Protein A 70 kDa

  • Lee, Sungjin;Park, Chin-Ju
    • 한국자기공명학회논문지
    • /
    • 제20권4호
    • /
    • pp.138-142
    • /
    • 2016
  • Replication Protein A (RPA) is the eukaryotic single-stranded DNA binding protein. It involves in DNA replication, repair, and damage response. Among three subunits, RPA70 has a protein-protein binding domain (RPA70N) at the N-terminal. It has known that the domain recruits several damage response proteins to the damaged site. Also, it is suggested that there are more candidates that interact with RPA70N. Even though several studies performed on the structural aspects of RPA70N and its ligand binding, the backbone assignments of RPA70N is not available in public. In this study, we present the backbone assignments of RPA70N.

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용 (Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins)

  • 김학준;김영태
    • 생명과학회지
    • /
    • 제6권3호
    • /
    • pp.185-192
    • /
    • 1996
  • 박테리오파지 T7 gene 2.5 단백질은 single-stranded DNA 결합 단백질로 박태리오파지 T7의 DNA복제, 재조합, 및 수선에 필수적으로 요구된다. Gene 2.5 protein은 T7의 DNA 합성과 성장에 필수적인 단백질이다. Gene 2.5 Protein이 중요시 되는 이유는 이 단백질이 T7의 다른 복제 필수단백질인 T7의 다른 복제 필수단백질인 T7 DNA polymerase 와 gene 4 protein(helicase/primase)와 서로 상호작용할 것으로 제안되었기 때문이다. (Kim and Richardson, J. Biol. Chem., 1992;1994). 이 단백질의 단백질 상호작용을 가능하게 하는 domain은 carboxyl-terminal domain일 것으로 여러 실험에서 대두되었기에, 이 domain의 특성을 파악하기 위해 야생형과 변이체 gene 2.5 단백질들을 각각 GST에 융합한후 fusion 단백질을 정제하였다. 정제된 이 융합 단백질들의 carboxyl-terminal domain이 T7 복제 단백질들과 상호작용을 조사하는지를 조사하기 위해 affinity chromatography로 이용하였다. 실험 결과, 아생형 GST-gene 2.5 융합단잭질(GST-2.5 (WT))는 T7 DNA polymerase 와 상호작용을 하였지만. 변이형 융합단백질(GST-2.5$\Delta$21C)는 interaction을 하지 못했다. 이 결과는 carbohyl-terminal domain이 단백질-단백질 상호작용을 하는데 직접적으로 관여하는 것을 증명하였다. 또한,GST2.5(WT)는 gene 4 protein(helicase/primase)와 직접 상호작용을 하나. GST2.5$\Delta$21C는 상호작용을 하지 못하는 것으로 나타났다. 따라서 gene 4 proteins와의 상호작용에도 gene 2.5 protein의 carboxyl-terminal domain이 직접 관여 한다는 것이 증명되었다. 이상의 결과에서 gene 2.5 protein은 박테리오파지 T7 의 유전자 목제 시 단백질-단백질 상호작용에 관혀아며, 특히 gene 2.5 protein의 carboxyl-terminal domain이 이러한 상호작용에 직접적으로 관여하는 domain이라는 것을 알 수가 있었다.

  • PDF

N4SSB 단백질의 C-말단기의 7개의 아미노산이 N4SSB 단백질의 in vivo 활성에 미치는 영향 (Role of C-terminal 7 Amino Acids of N4SSB Protein in Its in vivo Activity)

  • 최미영
    • 미생물학회지
    • /
    • 제34권4호
    • /
    • pp.248-253
    • /
    • 1998
  • Esherichia coli(E. coli) K12 균주를 숙주세포로 삼는 박테리오파아지인 N4는 single-stranded DNA에 결합하는 단백질인 N4SSB(bacteriophage N4-coded single-stranded DNA-binding protein) 단백질을 만든다. N4SSB 단백질은 N4 DNA replication 뿐만 아니라 late transcription과 N4 DNA recombination에도 필요한 여러 가지 기능을 가진 단백질이다. N4 late transcription은 숙주세포인 E. coli의 $E{\sigma}^{70}$ RNA polymerase에 의해서 수행이 되나 N4SSB 단백질을 반드시 필요로 하기 때문에 N4SSB 단백질이 생성될 때까지는 N4 late promoter로부터 RNA 합성이 일어나지 않는다. 본 연구에서는 N4SSB의 N4 DNA replication과 late transcription, 그리고 N4 DNA recombination에 필요한 영역(domain)을 알아내기 위해서 여러 가지 돌연변이형 N4SSB 단백질을 만들어 N4 DNA replication과 late transcription, 그리고 N4 DNA recombination의 3가지 작용에 대한 in vivo 활성을 조사 분석하였다. 그 결과 N4SSB 단백질의 C-말단기에 있는 7개의 아미노산이 N4SSB 단백질의 활성에 중요하다는 것을 알 수 있었다. 특히 C-말단기의 7개의 아미노산에는 세 개의 lysine이 포함되어 있는데 이 lysine이 N4SSB 단백질의 활성에 중요한 역할을 한다는 것이 제시되었다.

  • PDF

CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication

  • Seo, Hye-Ran;Jeong, Daun;Lee, Sunmi;Lee, Han-Sae;Lee, Shin-Ai;Kang, Sang Won;Kwon, Jongbum
    • Molecules and Cells
    • /
    • 제44권2호
    • /
    • pp.101-115
    • /
    • 2021
  • The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its half-life. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제17권3호
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

Isolation and Characterization of a Cryptic Plasmid, pMBLR00, from Leuconostoc mesenteroides subsp. mesenteroides KCTC 3733

  • Chae, Han Seung;Lee, Jeong Min;Lee, Ju-Hoon;Lee, Pyung Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.837-842
    • /
    • 2013
  • A cryptic plasmid, pMBLR00, from Leuconostoc mesenteroides subsp. mesenteroides KCTC 3733 was isolated, characterized, and used for the construction of a cloning vector to engineer Leuconostoc species. pMBLR00 is a rolling circle replication plasmid, containing 3,370 base pairs. Sequence analysis revealed that pMBLR00 has 3 open reading frames: Cop (copy number control protein), Rep (replication protein), and Mob (mobilization protein). pMBLR00 replicates by rolling circle replication, which was confirmed by the presence of a conserved double-stranded origin and single-stranded DNA intermediates. An Escherichia coli-Leuconostoc shuttle vector, pMBLR02, was constructed and was able to replicate in Leuconostoc citreum 95. pMBLR02 could be a useful genetic tool for metabolic engineering and the genetic study of Leuconostoc species.

Identification of a Cellular Protein Interacting with RNA Polymerase of Hepatitis C Virus

  • Park, Kyu-Jin;Choi, Soo-Ho;Koh, Moon-Soo;Kim, Sung-Wan;Hwang, Soon-Bong
    • BMB Reports
    • /
    • 제33권1호
    • /
    • pp.59-62
    • /
    • 2000
  • Hepatitis C virus (HCV) nonstructural 5B (NS5B) protein is an RNA-dependent RNA polymerase (RdRp). To determine whether it can contribute to viral replication by interaction with cellular proteins, the yeast two-hybrid screening system was employed to screen a human liver cDNA library. Using the HCV NS5B as a bait, we have isolated positive clones encoding a cellular protein. The NS5B interacting protein, 5BIP, is a novel cellular protein of 170 amino acids. Interaction of the HCV NS5B protein with 5BIP was confirmed by a protein-protein blotting assay. Recently, we have demonstrated that NS5B possesses an RdRp activity and thus it is possible that 5BIP, in association with NS5B, plays a role in HCV replication.

  • PDF

Annexin A2 gene interacting with viral matrix protein to promote bovine ephemeral fever virus release

  • Chen, Lihui;Li, Xingyu;Wang, Hongmei;Hou, Peili;He, Hongbin
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.33.1-33.15
    • /
    • 2020
  • Bovine ephemeral fever virus (BEFV) causes bovine ephemeral fever, which can produce considerable economic damage to the cattle industry. However, there is limited experimental evidence regarding the underlying mechanisms of BEFV. Annexin A2 (AnxA2) is a calcium and lipid-conjugated protein that binds phospholipids and the cytoskeleton in a Ca2+-dependent manner, and it participates in various cellular functions, including vesicular trafficking, organization of membrane domains, and virus proliferation. The role of the AnxA2 gene during virus infection has not yet been reported. In this study, we observed that AnxA2 gene expression was up-regulated in BHK-21 cells infected with the virus. Additionally, overexpression of the AnxA2 gene promoted the release of mature virus particles, whereas BEFV replication was remarkably inhibited after reducing AnxA2 gene expression by using the small interfering RNA (siRNA). For viral proteins, overexpression of the Matrix (M) gene promotes the release of mature virus particles. Moreover, the AnxA2 protein interaction with the M protein of BEFV was confirmed by GST pull-down and co-immunoprecipitation assays. Experimental results indicate that the C-terminal domain (268-334 aa) of AxnA2 contributes to this interaction. An additional mechanistic study showed that AnxA2 protein interacts with M protein and mediates the localization of the M protein at the plasma membrane. Furthermore, the absence of the AnxA2-V domain could attenuate the effect of AnxA2 on BEFV replication. These findings can contribute to elucidating the regulation of BEFV replication and may have implications for antiviral strategy development.