• Title/Summary/Keyword: Replication protein A

Search Result 324, Processing Time 0.024 seconds

Interaction of Stomatin with Hepatitis C Virus RNA Polymerase Stabilizes the Viral RNA Replicase Complexes on Detergent-Resistant Membranes

  • Kim, Jung-Hee;Rhee, Jin-Kyu;Ahn, Dae-Gyun;Kim, Kwang Pyo;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1744-1754
    • /
    • 2014
  • The hepatitis C virus (HCV) RNA genome is replicated by an RNA replicase complex (RC) consisting of cellular proteins and viral nonstructural (NS) proteins, including NS5B, an RNA-dependent RNA polymerase (RdRp) and key enzyme for viral RNA genome replication. The HCV RC is known to be associated with an intracellular membrane structure, but the cellular components of the RC and their roles in the formation of the HCV RC have not been well characterized. In this study, we took a proteomic approach to identify stomatin, a member of the integral proteins of lipid rafts, as a cellular protein interacting with HCV NS5B. Co-immunoprecipitation and co-localization studies confirmed the interaction between stomatin and NS5B. We demonstrated that the subcellular fraction containing viral NS proteins and stomatin displays RdRp activity. Membrane flotation assays with the HCV genome replication-competent subcellular fraction revealed that the HCV RdRp and stomatin are associated with the lipid raft-like domain of membranous structures. Stomatin silencing by RNA interference led to the release of NS5B from the detergent-resistant membrane, thereby inhibiting HCV replication in both HCV subgenomic replicon-harboring cells and HCV-infected cells. Our results identify stomatin as a cellular protein that plays a role in the formation of an enzymatically active HCV RC on a detergent-resistant membrane structure.

Structural and Functional Insight into Proliferating Cell Nuclear Antigen

  • Park, So Young;Jeong, Mi Suk;Han, Chang Woo;Yu, Hak Sun;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.637-647
    • /
    • 2016
  • Proliferating cell nuclear antigen (PCNA) is a critical eukaryotic replication accessory factor that supports DNA binding in DNA processing, such as DNA replication, repair, and recombination. PCNA consists of three toroidal-shaped monomers that encircle double-stranded DNA. The diverse functions of PCNA may be regulated by its interactions with partner proteins. Many of the PCNA partner proteins generally have a conserved PCNA-interacting peptide (PIP) motif, located at the N- or C- terminal region. The PIP motif forms a 310 helix that enters into the hydrophobic groove produced by an interdomain-connecting loop, a central loop, and a C-terminal tail in the PCNA. Post-translational modification of PCNA also plays a critical role in regulation of its function and binding partner proteins. Structural and biochemical studies of PCNA-protein will be useful in designing therapeutic agents, as well as estimating the outcome of anticancer drug development. This review summarizes the characterization of eukaryotic PCNA in relation to the protein structures, functions, and modifications, and interaction with proteins.

Dewormer drug fenbendazole has antiviral effects on BoHV-1 productive infection in cell cultures

  • Chang, Long;Zhu, Liqian
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.72.1-72.10
    • /
    • 2020
  • Background: Fenbendazole, a dewormer drug, is used widely in the clinical treatment of parasite infections in animals. Recent studies have shown that fenbendazole has substantial effects on tumor growth, immune responses, and inflammatory responses, suggesting that fenbendazole is a pluripotent drug. Nevertheless, the antiviral effects have not been reported. Fenbendazole can disrupt microtubules, which are essential for multiple viruses infections, suggesting that fenbendazole might have antiviral effects. Objectives: This study examined whether fenbendazole could inhibit bovine herpesvirus 1 (BoHV-1) productive infection in cell cultures. Methods: The effects of fenbendazole on viral production, transcription of the immediate early (IE) genes, viron-associated protein expression, and the cellular signaling PLC-γ1/Akt pathway were assessed using distinct methods. Results: Fenbendazole could inhibit BoHV-1 productive infections significantly in MDBK cells in a dose-dependent manner. A time-of-addition assay indicated that fenbendazole affected both the early and late stages in the virus replication cycles. The transcription of IE genes, including BoHV-1 infected cell protein 0 (bICP0), bICP4, and bICP22, as well as the synthesis of viron-associated proteins, were disrupted differentially by the fenbendazole treatment. The treatment did not affect the cellular signaling pathway of PLC-γ1/Akt, a known cascade playing important roles in virus infection. Conclusions: Overall, fenbendazole has antiviral effects on BoHV-1 replication.

The Effect of Poria cocos Extract to Inhibit Enterovirus Replication (적복령 추출물의 심근염 유발 엔테로바이러스 증식 억제 효과)

  • Han, Jae-Young;Kim, Jin Hee;Lim, Byung-Kwan
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.137-142
    • /
    • 2016
  • Enterovirus is a common cause of several severe diseases such as myocarditis, hand-foot-mouth disease, and meningitis in children and adult. There are many try to develop new antiviral drug for direct treatment in virus infection. However, synthetic chemical antiviral drug is not working. To overcome this limitation, we examined plant extracts. The antiviral effect of plant extracts was screened by HeLa cell survival assay in coxsackievirus B3 (CVB3) infection. We observed a strong antiviral effect of Poria cocos extract in a dose-dependent manner (1 mg/ml~0.01 mg/ml). P. cocos extract (1 mg/ml) treatment was dramatically decreased virus protease 2A induced eIF4G-I cleavage and virus capsid protein VP1 production. CVB3 positive and negative strand RNA amplification were significantly reduced in P. cocos extract treatment. P. cocos extract completely blocked early time activation of ERK and AKT activity in CVB3 infection. Taken together these data indicate that the treatment of P. cocos extract strongly inhibit CVB3 replication. Poria cocos extract may possible to developed as a therapeutic agent for enterovirus.

Trigger Factor Interacts with DnaA Protein to Stimulate its Interaction with DnaA Box

  • Lee, Yong-Sun;Lee, June;Kim, Hak-Kyun;Kang, Sukhyun;Han, Joo-Seok;Kim, Jae-Bum;Hwang, Deog-Su
    • Animal cells and systems
    • /
    • v.7 no.1
    • /
    • pp.81-87
    • /
    • 2003
  • While screening proteins that interact with DnaA protein, the initiator protein for Escherichia coil chromosomal DNA replication, we found a 52-kD sized protein which bound to DnaA protein in a salt-dependent manner. This protein was identified as trigger factor, a ribosome-associated peptidyl-prolyl- cisltrans isomerase with chaperone activity. Trigger factor was overproduced and purified to near homogeneity, and its effect on the function of DnaA protein was examined, Enhanced binding of DnaA protein to DnaA box with no apparent supershift in the gel-shift experiments suggested that trigger factor, by virtue of its chaperone activity, exerts a change on DnaA protein thus increasing its binding affinity for DnaA box.

Cohesion Establishment Factors Stimulate Endonuclease Activity of hFen1 Independently and Cooperatively

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Cho, Sayeon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1768-1771
    • /
    • 2015
  • Human Fen1 protein (hFen1) plays an important role in Okazaki fragment processing by cleaving the flap structure at the junction between single-stranded (ss) DNA and doublestranded (ds) DNA, an intermediate formed during Okazaki fragment processing, resulting in ligatable nicked dsDNA. It was reported that hChlR1, a member of the cohesion establishment factor family, stimulates hFen1 nuclease activity regardless of its ATPase activity. In this study, we found that cohesion establishment factors cooperatively stimulate endonuclease activity of hFen1 in in vivo mimic condition, including replication protein-A-coated DNA and high salt. Our findings are helpful to explain how a DNA replication machinery larger than the cohesion complex goes through the cohesin ring structure on DNA during S phase in the cell cycle.

Generation of a Mammalian Gene Expression Vector Using Bovine Viral Diarrhea Virus (Bovine Vira1 Diarrhea Virus를 이용한 포유동물세포 발현벡터의 개발)

  • 이영민
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.86-95
    • /
    • 2002
  • As a result of genome projects, the research to elucidate the function of a protein of interest has recently been well-recognized. In order to facilitate functional genomics, a useful mammalian gene expression vector is required. Using an infectious CDNA clone of BVDV pNADLclns-, we have developed a mammalian gene expression vector. In this study, a replication-competent full-length infectious CDNA clone containing puremycin acetyltransferase (pac) gene (pNADLclns-/pac) was successfully generated. The viral RNA replication and viral protein NS3 synthesis were examined by detecting metabollically $^{32}P$-labelled genomic viral RNA and immunoblotting with a mouse anti-NS3 antibody. To generate viral replicon as an expression vector, we examine if the viral structural genes (C, E0, El, E2) are required for viral replication by deletion analysis. As a result, all of the structural proteins are dispensable for viral replication per se, but essential for infectious viral particle formation. Based on our deletion analysis, we have generated a replication-competent BVDV viral replicon (pNADLclns-/pac/${\Delta}S$), whose structural genes are all deleted. In addition to NADLclns- /pac/${\Delta}S$, NADLclns-/ luc/${\Delta}S$ viral replicon containing luciferase gene as a reporter was constructed and fecund to be replication-compotent in HeLa and BHK cells as well as MDBK cells. Therefore, BVDV viral replicon developed in our study will be a useful tool to express a protein of interest in various mammalian cells.

Cloning of the non-virion (NV) of a Korean Isolate of Infectious Hematopoietic Necrosis and Identification of the Role of the NV in IHNV Replication (한국에서 분리된 전염성 조혈괴저 바이러스의 non-virion (NV) 단백질의 유전자 클로닝 및 바이러스 증식에서의 역할)

  • 문창훈;조화자;윤원준;박정재;박정민;김현주;도정완;이주양;임채렬
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2000
  • We have cloned and analyzed cDNA coding for non-virion (NV) protein of the m V - P R T The NV gene contained 336 bp open readmg frame and encoded a protein of 11 1 amino acids with a molecular weight of 13.2 kDa. The deduced amino acid sequence of NV of IHNVPRT was found to be 90-95% identical to those of foreign isolates of IHNV. These results indicate that NV gene of the MNV is highly conserved among &ifferent strains of THNV Northern blot analyses revealed that the levels of NV gene expression were strongly elevated after 20 h post-infection. In order to identify the role of NV in the replication of MNV in fish cells, IHNVinfected cells were treated with antisense oligonucleotides. While IHNV-PRT exposed to glycoprotein (G) antisense oligonucleotide showed severely reduced growth, the growth of virus exposed to NV antisense oligonucleotide was not affected by NV antisense oligonucleotide, which suggests that NV is not essential for replication of IHNV in fish cells.

  • PDF

Expression, Purification and Characterization of the BLM binding region of human Fanconi Anemia Group J Protein

  • Yeom, Kyuho;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • FANCJ is a DNA helicase which contributes genome stability by resolving G-quadruplex DNA from 5' to 3' direction. In addition to main ATPase helicase core, FANCJ has the protein binding region at its C-terminal part. BRCA1 and BLM are the binding partner of FANCJ and these protein-protein interactions contribute genomic stability and the proper response to replication stress. As the first attempt for studying FANCJ-BLM interaction, we prepared BLM binding region of FANCJ and characterized with CD and NMR spectroscopy. FANCJ (881-941) with N-ter 6xHis was purified as the oligomer. Secondary structure prediction based on CD data revealed that FANCJ (881-941) composed with ${\beta}$ sheet, turn and coils.$^1H-^{15}N$ HSQC spectra showed nonhomogeneous peak intensities with less number of peaks comparing than the number of amino acids in the construct. It indicated that optimization should be necessary for detailed further structural studies.

Pathogenicity and localization of the tobacco mosaic virus 4.8 kDa protein(oral)

  • Palukaitis, P.;Canto, T.;MacFarlane Scottish, S.A.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.65.1-65
    • /
    • 2003
  • In addition to the five well-characterized genes of Tobacco mosaic virus (TMV), this virus contains a sixth open reading frame (ORF6) that encodes a 4.8 kDa protein. TMV ORF6 overlaps the ORFs encoding the 30 kDa movement protein and the adjacent 17.5 kDa capsid protein. Although the 4.8 kDa protein could not be detected in vivo, alteration of the AUG codons of this ORF resulted in a mutant virus that attenuated the virulence of the mutated TMV in Nicotiana benthamiana, but not N. tabacum (tobacco). These sequence changes did not affect either the replication or movement of the mutated TMV. Expression of TMV ORF6 from the virus expression vector Potato virus X (PVX) intensified the virulence of this virus in N. benthmiana, but not tobacco, while expression of TMV ORF6 from the virus expression vector Tobacco rattle virus enhanced the pathogenicity observed in both N. benthamima and tobacco. Thus, the TMV ORF6 is a host- and virus-specific. virulence factor. However, two separate assays indicated that the TMV 4.8 kDa protein was not a suppression of RNA silencing. A fusion protein formed between the TMV 4.8 kDa protein and the green fluorescent protein was expressed from the PVX vector and localized to plasmodesmata. Possible roles of the 4.8 kDa protein in pathogenicity will be discussed

  • PDF