• Title/Summary/Keyword: Replication protein A

Search Result 324, Processing Time 0.02 seconds

Replicase and movement protein of Cucumber mosaic virus are symptom determinants in zucchini squash

  • Park, S. K.;P. Palukaitis;K. H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.137.1-137
    • /
    • 2003
  • A pepper strain of Cucumber mosaic virus (Pf-CMV) induces a mild chlorotic spot symptom in zucchini squash at 9 days post-inoculation (dpi), wile Fny strain of CMV causes severe mosaic and stunting symptom at 4 dpi in this host. Pseudorecombinants were constructed between the two strains, and assessments of symptom severity were indicated that both RNA2 and RNA3 were responsible for both mildness and the slow appearance of symptom elicited by Pf-CMV in zucchini squash. With various RNA2 and RNA3 chimeras between two strains of CMV, the genetic symptom determinants of phenotype of Pf-CMV were mapped to Tyr residue at positions amino acid 267 in 2a protein and at positions amino acid 168 in 3a movement protein (MP). Chimeras changed the sequences (both changed Tyr to lie) in the codons of both amino acid 168 of 3a MP and amino acid 267 of 2a protein were resulted in the high RNA accumulation, severity of symptom, and the rapid systemic spread, suggesting that 2a replicase as well as MP is involved in virus movement. The RNA accumulation pattern of all pseudorecombinants and chimeras are identical in protoplast of zucchini squash, indicating the virus movement is responsible for the phenotypes of two CMV strains rather than virus replication.

  • PDF

Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique (Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발)

  • Lee, Seong-Rak;Song, Eun-Kyoung;Jeong, Young-Joo;Lee Young-Yi;Kim, Ik-Jung;Choi, In-Hak;Park, Sae-Gwang
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

The Regulation of LexA on UV-Induced SOS Response in Myxococcus xanthus Based on Transcriptome Analysis

  • Sheng, Duo-hong;Wang, Ye;Wu, Shu-ge;Duan, Rui-qin;Li, Yue-zhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.912-920
    • /
    • 2021
  • SOS response is a conserved response to DNA damage in prokaryotes and is negatively regulated by LexA protein, which recognizes specifically an "SOS-box" motif present in the promoter region of SOS genes. Myxococcus xanthus DK1622 possesses a lexA gene, and while the deletion of lexA had no significant effect on either bacterial morphology, UV-C resistance, or sporulation, it did delay growth. UV-C radiation resulted in 651 upregulated genes in M. xanthus, including the typical SOS genes lexA, recA, uvrA, recN and so on, mostly enriched in the pathways of DNA replication and repair, secondary metabolism, and signal transduction. The UV-irradiated lexA mutant also showed the induced expression of SOS genes and these SOS genes enriched into a similar pathway profile to that of wild-type strain. Without irradiation treatment, the absence of LexA enhanced the expression of 122 genes that were not enriched in any pathway. Further analysis of the promoter sequence revealed that in the 122 genes, only the promoters of recA2, lexA and an operon composed of three genes (pafB, pafC and cyaA) had SOS box sequence to which the LexA protein is bound directly. These results update our current understanding of SOS response in M. xanthus and show that UV induces more genes involved in secondary metabolism and signal transduction in addition to DNA replication and repair; and while the canonical LexA-dependent regulation on SOS response has shrunk, only 5 SOS genes are directly repressed by LexA.

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • Nam, Ki-Yean;Chung, Dong-Hoon;Choi, Je-Won;Lee, Yun-Seong;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Transcriptional Control of Lactate Dehydrogenase A-Gene Expression during the Pre-replicative Phase of Regenerating Rat Liver (백서 재생간조직의 낙산탈수소효소 A-유전자 발현의 전사활성)

  • Kim, Hae-Young;Lee, Seung-Ki
    • YAKHAK HOEJI
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 1988
  • Transcriptional rate of lactate dehydrogenase A-gene(LDH-A) during the prereplicative phase of regenerating rat liver was determined by in vitro run-off transcription assay. The results show that the transcription rate of LDH A-gene increases between 12 hours and 15 hours peaking at 13 hours after partial hepatectomy of rat liver. The increased rate of LDH A-gene transcription was interfered after DL-propranolol treatment intraperitoneally injected twice at 1 hour and 8 hours after partial hepatectomy indicating that the transcriptional control of LDH A-gene expression may be mediated by beta adrenergic receptor and cAMP as a second messenger. And also was it shown that the temporally increased rate of LDH A-gene transcription was maximum one hour after the second cAMP-surge which is known to play an important role for the initiation of DNA replication during regeneration of rat liver. And the transcriptional rate of LDH A-gene was decreased to the basal level at the time period when the hepatocytes proliferate rapidly suggesting that the induced LDH Aisozyme may be required for the initiation of DNA replication during regeneration of rat liver. These data may be supporting for the hypothesis suggesting that the induced LDH A-isozyme during the pre-replicative phase of regenerating rat liver may play bifunctional roles as a glycolytic enzyme and a helix destablizing protein as well.

  • PDF

Characterization of Novel Plasmid p1B146 from Corynebacterium tuberculostearicum

  • Wieteska, Lukasz;Szewczyk, Eligia M.;Szemraj, Janusz
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.796-801
    • /
    • 2011
  • Corynebacterium tuberculostearicum B146, a strain derived from healthy human skin, contains a medium copy plasmid, p1B146. This plasmid was cloned and its complete nucleotide sequence determined. As a result, p1B146 was found to be 4,2 kb in size with a 53% G+C content, plus six open reading frames (ORFs) were distinguished. According to a computer-assisted alignment, two of the ORFs exhibited significant similarities to already-known common plasmid proteins, the first being the RepA gene, responsible for plasmid replication via a rolling-circle mechanism, and the second being an FtsK-like protein, the function of which remains unclear. The presence and quantity of RNA fragments in the putative ORFs were also evaluated.

Construction of a Novel Shuttle Vector for Tetragenococcus species based on a Cryptic Plasmid from Tetragenococcus halophilus

  • Min Jae Kim;Tae Jin Kim;Yun Ji Kang;Ji Yeon Yoo;Jeong Hwan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.211-218
    • /
    • 2023
  • A cryptic plasmid (pTH32) was characterized from Tetragenococcus halophilus 32, an isolate from jeotgal, Korean traditional fermented seafood. pTH32 is 3,198 bp in size with G+C content of 35.84%, and contains 4 open reading frames (ORFs). orf1 and orf2 are 456 bp and 273 bp in size, respectively, and their translation products showed 65.16% and 69.35% similarities with RepB family plasmid replication initiators, respectively, suggesting the rolling-circle replication (RCR) mode of pTH32. orf3 and orf4 encodes putative hypothetical protein of 186 and 76 amino acids, respectively. A novel Tetragenococcus-Escherichia coli shuttle vector, pMJ32E (7.3 kb, Emr), was constructed by ligation of pTH32 with pBluescript II KS(+) and an erythromycin resistance gene (ErmC). pMJ32E successfully replicated in Enterococcus faecalis 29212 and T. halophilus 31 but not in other LAB species. A pepA gene, encoding aminopeptidase A (PepA) from T. halophilus CY54, was successfully expressed in T. halophilus 31 using pMJ32E. The transformant (TF) showed higher PepA activity (49.8 U/mg protein) than T. halophilus 31 cell (control). When T. halophilus 31 TF was subculturd in MRS broth without antibiotic at 48 h intervals, 53.8% of cells retained pMJ32E after 96 h, and only 2.4% of cells retained pMJ32E after 14 days, supporting the RCR mode of pTH32. pMJ32E could be useful for the genetic engineering of Tetragenococcus and Enterococcus species.

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

Construction of Pseudoalteromonas - Escherichia coli shuttle vector based on a small plasmid from the marine organism Pseudoalteromonas (극지해양 Pseudoalteromonas 유래의 소형 플라스미드에 기반한 Pseudoalteromonas - Escherichia coli 셔틀벡터 제작)

  • Kim, Dockyu;Park, Ha Ju;Park, Hyun
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • A small plasmid (pDK4) from the Antarctic marine organism Pseudoalteromonas sp. PAMC 21150, was purified, sequenced and analyzed. pDK4 was determined to be 3,480 bp in length with a G+C content of 41.64% and contains three open reading frames encoding a replication initiation protein (RepA), a conjugative mobilization protein (Mob) and a hypothetical protein. PCR-amplified pDK4 was cloned in high-copy pUC19 to yield the fusion vector pDOC153. The chloramphenicol resistance gene was inserted into pDOC153 to give an ampicillin and chloramphenicol-resistant, Pseudoalteromonas - Escherichia coli shuttle vector (7,216 bp; pDOC155). The TonB-dependent receptor (chi22718_IV ) and exochitinase (chi22718_III ) genes from Arctic marine P. issachenkonii PAMC 22718 were cloned into pDOC155 to produce pDOC158 and pDOC165, respectively. Both vector derivatives were transferred into plasmid-free Pseudoalteromonas sp. PAMC 22137 by the triparental mating method. PCR experiments showed that the genes were stably maintained both in Pseudoalteromonas sp. PAMC 22137 and E. coli $DH5{\alpha}$ cells, indicating the potential use of pDOC155 as a new gene transfer system into marine Pseudoalteromonas spp.

NMR Study of the pH Effect on the DNA Binding Affinity of Human RPA

  • Lee, Min-Woo;Choi, Ju-Hyeok;Choi, Jae-Gyu;Lee, Ae-Ree;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.3
    • /
    • pp.71-75
    • /
    • 2016
  • The replication protein A (RPA) plays a crucial role in DNA replication, recombination, and repair. RPA consists of 70, 32 and 14 kDa subunits and has high single-stranded DNA (ssDNA) binding affinity. The largest subunit, RPA70, mainly contributes to bind to ssDNA as well as interact with many cellular and viral proteins. In this study, we performed nuclear magnetic resonance experiments on the complex of the DNA binding domain A of human RPA70 (RPA70A) with ssDNA, d(CCCCC), at various pH, to understand the effect of pH on the ssDNA binding of RPA70A. The chemical shift perturbations of binding residues were most significant at pH 6.5 and they reduced with pH increment. This study provides valuable insights into the molecular mechanism of the ssDNA binding of human RPA.