• Title/Summary/Keyword: Replacement ratio of recycled coarse aggregates

Search Result 29, Processing Time 0.02 seconds

Using Recycled Aggregates in Sustainable Resource Circulation System Concrete for Environment Preservation (녹색자연환경 보존을 위한 지속가능한 자원순환시스템 콘크리트)

  • Lee, Young-Joo;Jang, Jung-Kwun;Kim, Yoon-Il;Lim, Chil-Soon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.57-61
    • /
    • 2010
  • In this study, many concrete specimens were tested to investigate the variations of strength characteristics of high-strength concrete due to amount of recycled coarse aggregates, and to investigate the effect of steel-fiber reinforcement on concrete using recycled coarse aggregates. Test results showed that all of the variations of compressive, tensile and flexural strength appeared in linear reduction according to icrease the amount of recycled coarse aggregates, and steel-fiber reinforcement of 0.75% volumn of concrete recovered completely spliting tensile strength and flexual strength and recovered greatly compressive strength of concrete using recycled coarse aggregates of 100% displacement. And test results showed that the shear strength falled rapidly at 30% of replacement ratio so far as 34% of strength reduction ratio, but after that it falled a little within 3% up to the replacement ratio 100%, and steel-fiber reinforcement of 0.75% of concrete volumn recovered completely the deteriorated shear strength, moreover improved the shear strength above 50% rather than that of concrete using natural coarse aggregates.

  • PDF

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Recycling demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help solve the growing waste disposal crisis and the problem of depleted natural aggregates. The purpose of this study is to investigate chloride migration of recycled aggregate concrete containing pozzolanic materials by chloride migration coefficient. The specimens were made with recycled coarse aggregate as various replacement ratio(10, 30, 50%) and metakaolin, blast furnace slag, fly ash is replaced for recycled concrete with mixing ratio 20%. The major results are as follows. 1) Compressive strength of recycled aggregate concrete containing pozzolanic materials increase as curing age and chloride migration decrease. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag, metakaolin shows the similar or lower value than plain concrete at all ages.

  • PDF

Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates (재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jaesung;Na, Okpin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.63-71
    • /
    • 2015
  • The purpose of this study is to investigate the optimum replacement rate and material properties of eco-friendly recycled concrete using recycled coarse aggregates and rapid-chilled steel slag fine aggregates. The replacement rate of recycled coarse aggregates was increased from 30% to 50% of total volume of coarse aggregates and the rapid-chilled steel slag aggregates were substituted for 10% to 50% of total volume of fine aggregates. As a result, the increment of recycled coarse aggregates in concrete caused the reduction of the compressive strength. On the other hand, as increasing the replacement ratio of rapid chilled steel slag aggregates, the compressive strength was enhanced. Furthermore, the optimum use of rapid chilled steel slag aggregates was suggested up to 20~30% of fine aggregates and the use of it could be helpful to expand the replacement rate of recycled aggregates.

Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag

  • Djelloul, Omar Kouider;Menadi, Belkacem;Wardeh, George;Kenai, Said
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.103-121
    • /
    • 2018
  • This paper reports the effects of coarse and fine recycled concrete aggregates (RCA) on fresh and hardened properties of self-compacting concrete (SCC) containing ground granulated blast-furnace slag (GGBFS) as cement replacement. For this purpose, three SCC mixes groups, were produced at a constant water to binder ratio of 0.38. Both fine and coarse recycled aggregates were used as natural aggregates (NA) replacement at different substitution levels of 0%, 25%, 50%, 75% and 100% by volume for each mix group. Each group, included 0, 15% or 30% GGBFS as Portland cement replacement by weight. The SCC properties investigated were self-compactability parameters (i.e., slump flow, T500 time, V-funnel flow time, L-box passing ability and sieve stability), compressive strength, capillary water absorption and water penetration depth. The results show that the combined use of RCA with GGBFS had a significant effect on fresh and hardened SCC mixes. The addition of both fine and coarse recycled aggregates as a substitution up to 50% of natural aggregates enhance the workability of SCC mixes, whereas the addition from 50 to 100% decreases the workability, whatever the slag content used as cement replacement. An enhancement of workability of SCC mixes with recycled aggregates was noticed as increasing GGBFS from 0 to 30%. RCA content of 25% to 50% as NA replacement and cement replacement of 15% GGBFS seems to be the optimum level to produce satisfactory SCC without any bleeding or segregation. Furthermore, the addition of slag to recycled concrete aggregates of SCC mixes reduces strength losses at the long term (56 and 90 days). However, a decrease in the capillary water absorption and water permeability depth was noticed, when using RCA mixes with slag.

Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete

  • Ashish, Deepankar K.;Saini, Preeti
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • With the increase in industrialization and urbanization, growing demand has enhanced rate of new constructions and old demolitions. To avoid serious environmental impacts and hazards recycled concrete aggregates (RCA) is being adopted in all over the world. This paper investigates successive recycled coarse aggregates (SRCA) in which old concrete made with RCA in form of concrete cubes was used. The cubes were crushed to prepare new concrete using aggregates from crushing of old concrete, used as SRCA. The mechanical behavior of concrete was determined containing SRCA; the properties of SRCA were evaluated and then compared with natural aggregates (NA). Replacement of NA with SRCA in ratio upto 100% by weight was studied for workability, mechanical properties and microstructural analysis. It was observed that with the increase in replacement ratio workability and compressive strength decreased but in acceptable limits so SRCA can be used in low strength concretes rather than high strength concrete structures.

Shear Behavior of Reinforced Concrete Beams according to Replacement Ratio of Recycled Coarse Aggregate (순환 굵은골재 치환율에 따른 철근콘크리트 보의 전단거동)

  • Kim, Sang-Woo;Jeong, Chan-Yu;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with recycled coarse aggregates. A total of six specimens with various replacement ratios of recycled coarse aggregates (0%, 50%, and 100%) and different amount of shear reinforcement were cast and tested in this study. A finite element analysis was performed to predict the shear behavior of the specimens with natural or recycled coarse aggregates. The FE analysis was performed using a two-dimensional nonlinear FE analysis program based on the disturbed stress field model (DSFM), which is an extension of the modified compression field theory (MCFT). Experimental results showed that the specimens with 50% and 100% replacement ratios of recycled coarse aggregates had the similar shear strength compared to the specimen with natural aggregates, regardless of the replacement ratios of recycled coarse aggregates and the amount of the shear reinforcement. Furthermore, the comparison between experimental and analytical results showed that the proposed numerical modeling methods and the analytical model, DSFM, can be successfully used to predict the shear behavior of reinforced concrete beams with recycled coarse aggregates.

Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method (반응표면 분석법을 이용한 천연마섬유보강 순환굵은골재 콘크리트의 성능 평가)

  • Jeon, Ji Hong;Kim, Hwang Hee;Kim, Chun Soo;Yoo, Sung Yeol;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, evaluated ware the strength and durability of the vegetated water purification channel concrete to which recycled aggregates, hawang-toh and jute were applied. Box-Behnken method of response surface analysis in statistics was applied to the experimental design. Experimental variables are as follows, recycled coarse aggregates, hawang-toh, blast-furnace slag and jute fiber. In the experiment, conducted were the tests of compressive strength, chloride ion penetration, abrasion resistance and impact resistance the replacement rate effects of the recycled aggregates, blast-furnace slag and hwang-toh on the performance of vegetated water purification channel concrete were analyzed by using the response surface analysis method on the basis of the experimental results. In addition, an optimum mixing ratio of vegetated water purification channel concrete was determined by using the experimental results. The optimum mixing ratio was determined to be in 10.0% recycled coarse aggregates, 60.0% blast-furnace slag, 10.1% hwang-toh and 0.16% jute fiber. The compressive strength, chloride ion penetration, abrasion rate, and impact number of fracture test results of the optimum mixing ratio were 24.1 MPa, 999 coulombs, 10.30 g/mm3, and 20 number, respectively.

The Effects of Steel-Fiber Reinforcement on High Strength Concrete Replaced with Recycled Coarse Aggregates More Than 60% (순환굵은골재 60% 이상 사용한 고강도 콘크리트에 대한 강섬유 보강 효과)

  • Kim, Yoon-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.404-417
    • /
    • 2016
  • The purpose of this study is to examine the extent to which the deterioration in strength of high strength concrete of 60MPa replaced by a large amount of recycled coarse aggregates (more than 60% to 100% of replacement ratio) could be recovered with steel fiber reinforcement through material compressive strength test and shear failure test on short and middle beams and then to offer useful data for aggregate supply system of a sustainable resource circulation type. This study first examined the results of previous related tests. The results of the material compressive strength tests confirmed that when using a combination of steel fiber reinforcements of volumn ratio 0.75% and high quality recycled coarse aggregates with an water absorption rate within 2.0%, the strength characteristics of high strength concrete of 60MPa level were not only restored to the strength level of concrete made with natural aggregates, but also showed superior ductility. And the shear failure tests on short and middle beams using recycled coarse aggregates more than 60% with shear span to depth ratio (a/d) of 2 and 4 controlled by shear forces mainly confirmed that effects of superior shear strength increase and ductile behavior characteristics were showed by steel fiber reinforcements.

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.147-153
    • /
    • 2010
  • The recycling of demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help to solve the growing waste disposal crisis and the problem of the depletion of natural aggregates. The purpose of this study is to investigate the chloride migration of recycled aggregate concrete containing pozzolanic materials by the chloride migration coefficient. The specimens were made with recycled coarse aggregate at various replacement ratios (10, 30, 50%) and metakaolin, blast furnace slag, and fly ash is replaced for recycled concrete with a mixing ratio of 20%. The major results are as follows. 1) The compressive strength of recycled aggregate concrete containing pozzolanic materials increases as the curing age and chloride diffusivity decreases. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag or metakaolin that shows a value similar to or lower than that of plain concrete at all ages.

Effects of Replacement Ratio of Recycled Coarse Aggregate on the Shear Performance of Reinforced Concrete Beams without Shear Reinforcement

  • Yun, Hyun-Do;You, Young-Chan;Lee, Do-Heon
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.471-477
    • /
    • 2011
  • This paper will describe the experimental results on the shear behaviors of reinforced concrete (RC) beam with recycled coarse aggregate (RCA). The primary objective of this research is to evaluate the influences of different RCA replacement percentage (i.e, 0%, 30%, 60%, and 100%) on the shear performance of reinforced concrete beams without shear reinforcement. Eight large-scale RC beams without shear reinforcement were manufactured and tested to shear failure. All had a rectangular cross-section with 400mm width ${\times}$ 600mm depth and 6000mm length, and were tested with a shear span-to-depth of 5.1. The results showed that the deflection and shear strength were little affected by the different RCA replacement percentage. Actual shear strength of each RCA beam was compared with the shear strength predicted using the provisions of ACI 318 code and Zsutty'e equation for shear design of RC beams. ACI 318 code predicted the shear strength of RCA reinforced concrete beams well.