• Title/Summary/Keyword: Replacement behaviour

Search Result 42, Processing Time 0.025 seconds

Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings

  • Yang, You-Fu;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.257-284
    • /
    • 2006
  • The behaviour of hollow structural steel (HSS) stub columns and beams filled with normal concrete and recycled aggregate concrete (RAC) under instantaneous loading was investigated experimentally. A total of 40 specimens, including 30 stub columns and 10 beams, were tested. The main parameters varied in the tests were: (1) recycled coarse aggregate (RCA) replacement ratio, from 0 to 50%, (2) sectional type, circular and square. The main objectives of these tests were threefold: first, to describe a series of tests on new composite columns; second, to analyze the influence of RCA replacement ratio on the compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST), and finally, to compare the accuracy of the predicted ultimate strength, bending moment capacity and flexural stiffness of the composite specimens by using the recommendations of ACI318-99 (1999), AIJ (1997), AISC-LRFD (1999), BS5400 (1979), DBJ13-51-2003 (2003) and EC4 (1994).

Effect of crumb rubber on compressive behaviour of CRCFST stub columns

  • Liu, Dawei;Liang, Jiongfeng;Zhang, Guangwu;Wang, Jianbao
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.267-272
    • /
    • 2020
  • This paper investigates the effect of crumb rubber (CR) on compressive behaviour of crumb rubber concrete filled steel tube (CRCFST) stub columns. Therefore, experiments on 16 stub columns subjected to axial loading are carried out. The results show that the failure modes of CRCFST stub columns with different CR replacement ratios and CR size are similar, manifested the buckling of the outer steel tube. The axial bearing capacity and stiffness both decrease with an increase in CR replacement ratio, and with decreasing CR size.

A Study on Replacement Behaviour of Soft Soil by Centrifuge Modelling Test (원심모형시험을 통한 연약지반의 강제치환거동 연구)

  • 이승원;이영남
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.141-151
    • /
    • 2000
  • 본 연구에서는 토사나 사석을 이용하여 자체를 축조하는 과정에서 발생하는 연약지반의 강제치환거동을 연구하기 위하여 다양한 시험조건에 대한 원심모셩을 수행하였다. 제체축조에 따른 연약지반의 강제치환거동은 제체의 성토시공방법, 성토재의 입경, 연약지반의 종류와 강도 등에 따라 맣은 차이를 보였는데, 특히 성토과정 중에 발생하는 과잉간극수압의 크기와 밀접한 상관관계를 보였다. 급속시공인 경우에 연약지반의 파괴영역은 회적으로 확대되고 성토사면의 기울기는 완만해졌으며, 성토재의 입경이 클수록 치환깊이가 증가하고 성토사면의 기울기가 급하게 형성되었다. 그리고 동일점토에서는 지반의 강도가 클수록 치환량이 적었지만, 점토의 종류가 다른 경우에는 지반내 발생하는 과잉간극수압의 크기와 소산성조에따라 치환거동이 많은 영향을 받는 것으로 나타났다.

  • PDF

Experimental and analytical study on flexural behaviour of fly ash and paper sludge ash based geopolymer concrete

  • Senthamilselvi, P.;Palanisamy, T.
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • This article presents the flexural behaviour of reinforced fly ash (FA)-based geopolymer concrete (GPC) beams with partial replacement of FA for about 10% by weight with paper sludge ash (PSA). The beams were made of M35 grade concrete and cured under three curing conditions for comparison viz., ambient curing, external exposure curing, and oven curing at $60^{\circ}C$. The beams were experimentally tested at the 28th day of casting after curing by conducting two-point loading flexural test. Performance aspects such as load carrying capacity, first crack load, load-deflection and moment-curvature behaviours of both types of beams were experimentally studied and their results were compared under different curing conditions. To verify the response of reinforced GPC beams numerically, an ANSYS 13.0 finite element program was also used. The result shows that there is a good agreement between computer model failure behaviour with the experimental failure behaviour.

Centrifuge Model Experiments on Behaviour Characterisitc in Forced Replacement Method (강제치환 거동특성에 관한 원심모형실험)

  • Lee, Jong-Ho;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.131-137
    • /
    • 2003
  • This thesis is results of centrifuge model experiments to investigate the behavior of replacement method in dredged and reclaimed ground. For experimental works, centrifuge model tests were carried out to investigate the behavior of replacement method in soft clay ground. Basic soil property tests were performed to find mechanical properties of clay soil sampled from the southern coast of Korea which was used for ground material in the centrifuge model tests. Reconstituted clay ground of model was prepared by applying preconsolidation pressure in 1g condition with specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50g. Replacing material of leads having a certain degree of angularity was used and placed until the settlement of embankment of replacing material was reached to the equilibrium state. Vertical displacement of replacing material was monitored during tests. Depth and shape of replacement, especially the slope of penetrated replacing material and water contents of clay ground were measured after finishing tests. Model tests of investigating the stability of embankment after backfilling were also performed to simulate the behavior of the dike treated with replacement and backfilled with sandy material. As a result of centrifuge model test, the behavior of replacement, the mechanism of the replacing material being penetrated into clay ground and depth of replacement were evaluated.

  • PDF

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

Mitigation of liquefaction-induced uplift of underground structures by soil replacement methods

  • Sudevan, Priya Beena;Boominathan, A.;Banerjee, Subhadeep
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.365-379
    • /
    • 2020
  • One of the leading causes for the damage of various underground structures during an earthquake is soil liquefaction, and among this liquefaction-induced uplift of these structures is a major concern. In this study, finite-difference modelling is carried out to study the liquefaction-induced uplift of an underground structure of 5 m diameter (D) with and without the replacement of the in-situ fine sand around the structure with the coarse sand. Soil replacements are carried out by three methods: replacement of soil above the structure, around the structure, and below the structure. The soil behaviour is represented using the elastic-perfectly plastic Mohr-Coulomb model, where the pore pressures were computed using Finn-Byrne formulation. The predicted pore pressure and uplift of the structure due to sinusoidal input motion were validated with the centrifuge tests reported in the literature. Based on numerical studies, an empirical equation is developed for the determination of liquefaction-induced maximum uplift of the underground structure without replacement of the in-situ sand. It is found that the replacement of soil around the structure with 2D width and spacing of D can reduce the maximum uplift by 50%.

An Experimental Study on the Behaviour of Modular GFRP Deck for Use in Deteriorated Bridge Decks Replacement (노후교량 바닥판 대체용 Modular GFRP 바닥판 거동에 관한 실험 연구)

  • Ji, Hyo-Seon;Chunk, Kyung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • The behaviour of Modular GFRP(Glass Fiber Reinforced Polymers) decks for use in deteriorated bridge decks replacement are investigated experimentally in this study. As for the performance evaluation of bridge decks, experimental studies on the 3 test specimens with 1/5 scale of full size were carried out. Three specimens were sandwich plates with box tube cores. The constituents of bridge decks were glass fiber preforms and epoxy resin. The experimental results of all the specimens were summarized for maximum strength, stiffness and deformation capacity. A finite element analyses were compared to verify validity of experimental results.

  • PDF

Strength and behaviour of recycled aggregate geopolymer concrete beams

  • Deepa, Raj S;Jithin, Bhoopesh
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • In the present day scenario, concrete construction is rapidly becoming uneconomical and non sustainable practice, due to the scarcity of raw materials and environmental pollution caused by the manufacturing of cement. In this study an attempt has been made to propose recycled aggregates from demolition wastes as coarse aggregate in geopolymer concrete (GPC). Experimental investigations have been conducted to find optimum percentage of recycled aggregates (RA) in GPC by replacing 20%, 30%, 40%, 50% and 60% of coarse aggregates by RA to produce recycled aggregate geopolymer concrete (RGPC). From the study it has been found that the optimum replacement percentage of recycled aggregates was 40% based on mechanical properties and workability. In order to study and compare the flexural behaviour of RGPC and GPC four beams of size $175mm{\times}150mm{\times}1200mm$ were prepared and tested under two point loading. Test results were evaluated with respect to first crack load, ultimate load, load-deflection characteristics, ductility and energy absorption characteristics. Form the experimental study it can be concluded that the addition of recycled aggregate in GPC causes slight reduction in its strength and ductility. Since the percentage reduction in strength and behaviour of RGPC is meager compared to GPC it can be recommended as a sustainable and environment friendly construction material.

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.