• Title/Summary/Keyword: Replacement Ratio

Search Result 1,410, Processing Time 0.023 seconds

The Effects of Fly-ash Replacement on the Properties of Undispersed Underwater Concrete (플라이애시 치환율 변화에 따른 수중불분리 콘크리트의 특성에 관한 연구)

  • 원종필;최응규;이대주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.387-393
    • /
    • 1996
  • The purpose of this study is analyze the properties of undispersed concrete according to replacement of the ratio of fly-ash. The test results show that as the ratio of flyash replacement which increasing fluidity but the amounts of air content, suspended solid and pH values dicreased and setting time is delayed. The ten persent replacment of fly-ash has less water pollution and high compressive strength value than other ratio of fly-ash replacement.

  • PDF

Variation of Stress Concentration Ratio with Area Replacement Ratio for SCP-Reinforced Soils under Quay Wall (치환율에 따른 안벽구조물 하부 SCP 복합지반의 응력분담비)

  • 김윤태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay, sand compaction pile method (SCP) has usually been applied. SCP-reinforced ground is composite soil which consists of the sand pile and the surrounding soft soil. One of main important considerations in design and analysis for SCP-reinforced soils is stress concentration ratio according to area replacement ratio. In this paper, the numerical analysis was conducted to investigate characteristics of stress concentration ratio in composite ground. It was found that stress concentration ratio of composite ground is not constant as well as depends on several factors such as area replacement ratio, depth of soft soil, and consolidation process. The values of stress concentration ratio increase during loading stage due to stress transfer of composite soil, and reach up to 2.5∼12 according to area replacement ratio at the end of construction. After the end of consolidation, however, these values are converged to 2.5 to 6.0 irrespective of area replacement ratio due to increase in effective stress of soft soil during consolidation process.

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

Effect of Blast Furnace Slag, Hwang-toh and Reinforcing Fibers on The Physical and Mechanical Properties of Porous Concrete Using Blast Furnace Slag Coarse Aggregate (고로슬래그 골재를 사용한 다공성 콘크리트의 물리·역학적 특성에 미치는 고로슬래그 미분말, 황토 및 보강섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.53-60
    • /
    • 2010
  • The effects of blast furnace slag, hwang-toh, and reinforcing fiber on the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio was varied to 0 %, 25 % and 50 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH, unit mass, and void ratio tests have been performed to study the physical properties of the porous concrete using blast furnace slag coarse aggregates with the polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh, while a series of compressive tests have been performed to evaluate the strength property depending on polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh. The test results indicated that the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates is affected by the replacement ratio of blast furnace slag, and the fiber contents. According to the tests with polyvinyl alcohol fiber contents, the void ratio was decreased and the compressive strength was upgraded.

Properties of Shrinkage and Strength of Concrete Incorporating Blast-furnace Slag (고로슬래그 치환율 변화에 따른 고강도 콘크리트의 강도 및 수축 특성)

  • Son, Ho Jung;Noh, Sang-Kyun;Kim, Seoung Hwan;Han, Min Cheol;Baek, Joo Hyun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.99-102
    • /
    • 2008
  • This study investigates the properties of the flow, air content, strength, hydration heat, and the autogenous shrinkage, and the results are summarized as following. As a properties of fresh concrete, the flow increased and the air content decreased as the replacement ratio of BS increased. The time of set delayed as the replacement ratio of BS increased by latent hydraulicity. The compressive strength of hardening concrete was smaller than OPC as the replacement ratio of BS increased at young concrete, however it was more than equal after 28th day and from then on. The rising temperature ratio which occurs by simplicity insulation decreased as the replacement ratio of BS increased, but it increased by latent hydraulicity reaction at the latter half. The length ratio of autogenous shrinkage of OPC was 319×10-6, however it was shorter when the replacement ratio was 40% as showing 290×10-6.

  • PDF

Study on the Relationship of Strength Parameters with SCP Replacement and Mixture Ratio (모래다짐말뚝(SCP)의 치환율과 혼합율에 따른 강도정수의 상관성에 관한 연구)

  • 서주영;임종철;박이근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.733-740
    • /
    • 2003
  • When SCP (Sand Compaction Pile) is used in the improvement of soft ground, some problems like the difficulty of vertical construction and other construction difficulties due to the use of high pressure are encountered, There is a possibility that the strength parameters used in the design may be different with those obtained from the investigation of the quality variation with depth for the irregular, then the section may be not a sand pile but a combination of sand and clay. The mixture ratio concept is used, it is defined as the quantity of sand corresponding to the replacement ratio. Using this concept, the strength parameter relationship of the replacement and mixture ratio was determined. The use of these parameters in the design of SCP is most appropriate.

  • PDF

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

Fundamental Characteristics of Concrete According to Fineness Modulus and Replacement Ratio of Crushed Sand (부순모래의 조립률 및 치환률에 따른 콘크리트의 기초 특성)

  • Yun, Yong-Ho;Choi, Jong-Oh;Lee, Dong-Gyu;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 2015
  • The paper evaluates the effect of the physical property, fineness modulus (FM) and replacement ratio of crushed sand on the characteristics of concrete. This is intended to use crushed sand from Daegu-Kyungbuk region as the fine aggregate of concrete. The experimental result indicates that the replacement ratio of crushed sand needs to be less than 50% to satisfy the mixed gradation of both natural and crushed sand when their FMs are 2.0 and 3.2, respectively. The slump of concrete with crushed sand increased as the replacement ratio of crushed sand increased, while the workability of concrete with the replacement ratio of more than 75% was significantly reduced. The air content and bleeding rate of concrete was reduced as the replacement ratio increased. Furthermore, due to the enhancement of the concrete adhesive regardless of the FM of crushed sand, compressive strength of concrete tended to improve as the replacement ratio increased.

An experimental study on the Carbonation and Drying Shrinkage of High Strength Concrete Acording to Kinds and Ratios of Mineral Admixtures (혼화재 종류 및 치환율에 따른 고강도콘크리트의 중성화와 건조수축에 관한 실험적 연구)

  • Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • Carbonation and drying shrinkage are very important properties of concrete, that can cause concrete to lower its capacity and spall. But the research on them in high strength concrete is very poor. In this study, to estimate influences of W/B, the kind of admixture, the replacement ratio of admixture, fineness of blast furnace and etc. on drying shrinkage and carbonation, we make experiment with 3 levels(28, 35, 55%) of W/B, 3 kinds(blast-furnace slag, fly-ash, silica-fume) of admixture, 3 levels of the replacement ratio, 3 levels(4000, 6000, 8000cm2/g) of fineness of blast-furnace slag and 2 kinds of curing condition. As the results, compressive strength of concrete was decreased, as W/C was increased and the replacement ratio of admixture was increased. Drying shrinkage was increased, as W/B was higher, the replacement ratio of admixture was increased and fineness of blast-furnace slag was decreased. And carbonation was increased, as W/B ratio was higher, the replacement ratio of admixture was increased.

An Experimental Study on the Properties of Concrete according to Water-Cement Ratio and Bottom Ash Replacement Ratio (물시멘트비 및 Bottom Ash 대체율에 따른 콘크리트의 특성에 관한 실험적 연구)

  • 이종호;조봉석;이태희;김용로;최세진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.699-704
    • /
    • 2002
  • Recently, the coal ash production has been increased by increase of consumption of electric power. So it is important to find a reclaimed place and treatment utility for treating coal ash. Accordingly, in this study we performed an experimental study to compare and analyze the properties of concrete according to W/C and bottom ash replacement ratio. As a result of this study, it was found that the bleeding content was decreased according to decrease of W/C and increase of bottom ash replacement ratio, and the compressive strength of concrete using bottom ash was similar to plain concrete(replacement ratio 0%).

  • PDF