• Title/Summary/Keyword: Reperfusion injury

Search Result 333, Processing Time 0.03 seconds

The role of necroptosis in the treatment of diseases

  • Cho, Young Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.219-224
    • /
    • 2018
  • Necroptosis is an emerging form of programmed cell death occurring via active and well-regulated necrosis, distinct from apoptosis morphologically, and biochemically. Necroptosis is mainly unmasked when apoptosis is compromised in response to tumor necrosis factor alpha. Unlike apoptotic cells, which are cleared by macrophages or neighboring cells, necrotic cells release danger signals, triggering inflammation, and exacerbating tissue damage. Evidence increasingly suggests that programmed necrosis is not only associated with pathophysiology of disease, but also induces innate immune response to viral infection. Therefore, necroptotic cell death plays both physiological and pathological roles. Physiologically, necroptosis induce an innate immune response as well as premature assembly of viral particles in cells infected with virus that abrogates host apoptotic machinery. On the other hand, necroptosis per se is detrimental, causing various diseases such as sepsis, neurodegenerative diseases and ischemic reperfusion injury. This review discusses the signaling pathways leading to necroptosis, associated necroptotic proteins with target-specific inhibitors and diseases involved. Several studies currently focus on protective approaches to inhibiting necroptotic cell death. In cancer biology, however, anticancer drug resistance severely hampers the efficacy of chemotherapy based on apoptosis. Pharmacological switch of cell death finds therapeutic application in drug- resistant cancers. Therefore, the possible clinical role of necroptosis in cancer control will be discussed in brief.

Matrix Metalloproteinases, New Insights into the Understanding of Neurodegenerative Disorders

  • Kim, Yoon-Seong;Joh, Tong-H.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.133-143
    • /
    • 2012
  • Matrix metalloproteinases (MMPs) are a subfamily of zinc-dependent proteases that are re-sponsible for degradation and remodeling of extracellular matrix proteins. The activity of MMPs is tightly regulated at several levels including cleavage of prodomain, allosteric activation, com-partmentalization and complex formation with tissue inhibitor of metalloproteinases (TIMPs). In the central nervous system (CNS), MMPs play a wide variety of roles ranging from brain devel-opment, synaptic plasticity and repair after injury to the pathogenesis of various brain disorders. Following general discussion on the domain structure and the regulation of activity of MMPs, we emphasize their implication in various brain disorder conditions such as Alzheimer's disease, multiple sclerosis, ischemia/reperfusion and Parkinson's disease. We further highlight accumu-lating evidence that MMPs might be the culprit in Parkinson's disease (PD). Among them, MMP-3 appears to be involved in a range of pathogenesis processes in PD including neuroinflamma-tion, apoptosis and degradation of ${\alpha}$-synuclein and DJ-1. MMP inhibitors could represent poten-tial novel therapeutic strategies for treatments of neurodegenerative diseases.

What is body underweight?

  • Beeram, Eswari;Eshita, Ishrat Rafique
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.5
    • /
    • pp.33-36
    • /
    • 2019
  • Arginine is one of the basic aminoacid found to be associated with histones and also one of the essential aminoacids now. Arginine is provided by diet, and also found to be synthesised in the body through intestinal-renal axis. Justification---BMI---Associated Risks-How to gain body weight---Healthy. Foods to Gain Weight Fast---High-Protein Vegetables and Fruits(with Image)-Recipes---Physical exercises-List of fruits and vegetables grown in Bangladesh with local names, English names and Botanical names-taxonomic family names. Arginine as drug was first approved by FDA and has recognised as a excellent dietary supplement for curing diseases like preeclampsia during gestation, diabetes and insulin resistance in obese patients. Preeclampsia is characterised by high blood pressure and proteinuria in gestational period of after 20 weeks. Severe preeclampsia is characterised by headaches, blurred vision, and inability to have high photovision, nausea and vomiting. L-Arginine along with Vit C and E are given as medical food to the patients and decrease in condition symptoms is the project now under phase II clinical trial. However the role of arginine in ameolirating preeclampsia symptoms is uncertain except with that of hypertension. Arginine is used to treat pain in sickle cell anaemia, lung damage, reperfusion injury, Trauma and shock but should be excluded during sepsis.

Inhibitiory effect of green tea extract on $A\beta$-induced PC12 cell death

  • Lee, Sun-Young;Lee, Seung-Ho;Son, Dong-Ju;Kim, Su-Jin;Ha, Tae-Youl;Yun, Yeo-Pyo;Oh, Ki-Wan;Hong, Jin-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.82.2-83
    • /
    • 2003
  • Beta-amyloid peptide (A${\beta}$) is considered to be responsible for the pathogenesis of the Alzheimer's disease. Several lines of evidence support that A${\beta}$-amyloid-induced cytotoxicity is mediated through the generation of reactive oxygen species (ROS). Agents that are able to scavenge excess ROS may be useful as protecting or reducing agents for development or progress of AD. Green tea extract has been known to have antioxidant property. Our previous studies also demonstrate that green tea extract protected ischemia/reperfusion-induced brain injury by reduction of cell death through scavenging of oxidative damages of macromolecules. (omitted)

  • PDF

Enhancing Venous Anastomosis Visualization in Murine Kidney Transplants: The Two Stay Suture Technique

  • Jong-Min Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.6
    • /
    • pp.423-428
    • /
    • 2023
  • The mouse kidney transplantation model serves as an invaluable tool for exploring various aspects of the transplant process, including acute rejection, cellular and humoral rejection, ischemia-reperfusion injury, and the evaluation of novel therapeutic strategies. However, conducting venous anastomosis in this model poses a significant challenge due to the thin and pliable characteristics of the renal vein, which often obstruct clear visualization of the resected vein's edge. This study proposes the adoption of a two stay suture technique to enhance the visualization of the renal vein's edge, thereby facilitating efficient and successful venous anastomosis. A total of 22 mice served as kidney donors in this study. The conventional anchoring suture technique was employed for venous anastomosis in 11 of these mice, while the remaining 11 underwent the two stay suture technique. The anastomosis duration and completion rates were then compared between these two groups. The conventional anchoring suture technique yielded an average anastomosis time of 29 minutes and a completion rate of 64%. In contrast, the two stay suture technique demonstrated a substantial improvement, with an average anastomosis time of 14 minutes and a completion rate of 100%. The two stay suture technique offers a promising solution to enhance visualization during venous anastomosis in murine kidney transplantation. This technique may particularly benefit novices by enabling them to perform venous anastomosis more easily, swiftly, and successfully.

Ischemic Time Associated with Activation of Rejection-Related Immune Responses (허혈 시간과 거부반응 관련 면역반응)

  • Nam, Hyun-Suk;Choi, Jin-Yeung;Kim, Yoon-Tai;Kang, Kyung-Sun;Kwon, Hyuk-Moo;Hong, Chong-Hae;Kim, Doo;Han, Tae-Wook;Moon, Tae-Young;Kim, Jee-Hee;Cho, Byung-Ryul;Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • v.26 no.2
    • /
    • pp.138-143
    • /
    • 2009
  • Ischemia/reperfusion injury(I/RI) is the major cause of acute renal failure and delayed graft function(DGF) unavoidable in renal transplantation. Enormous studies on ischemia damage playing a role in activating graft rejection factors, such as T cells or macrophages, are being reported. Present study was performed to determine whether ischemia time would play an important role in activating rejection-related factors or not in rat models of I/RI. Male Sprague-Dawley rats were submitted to 30, 45, and 60 minutes of warm renal ischemia with nephrectomy or control animals underwent sham operation(unilateral nephrectomy). Renal function and survival rates were evaluated on day 0, 1, 2, 3, 5 and 7. Immunofluorescence staining of dendritic cells(DCs), natural killer(NK) cells, macrophages, B cells, CD4+ and CD8+ T cells were measured on day 1 and 7 after renal I/RI. Survival rates dropped below 50% after day 3 in 45 minutes ischemia. Histologic analysis of ischemic kidneys revealed a significant loss of tubular architecture and infiltration of inflammatory cells. DCs, NK cells, macrophages, CD4+ and CD8+ T cells were infiltrated from a day after I/RI depending on ischemia time. Antigen presenting cells(DCs, NK cells or macrophages) and even T cells were infiltrated 24 hours post-I/RI, which is at the time of acute tubular necrosis. During the regeneration phase, not only these cells increased but B cells also appeared in more than 45 minutes ischemia. The numbers of the innate and the adaptive immune cells increased depending on ischemia as well as reperfusion time. These changes of infiltrating cells resulting from each I/RI model show that ischemic time plays a role in activating rejection related immune factors and have consequences on progression of renal disease in transplanted and native kidneys.

An Experimental Study on the Myocardial Protection Effects of the Cardioplegic Solution (Cardioplegic Solution의 심근보호 효과에 관한 실험적 연구)

  • 이종국
    • Journal of Chest Surgery
    • /
    • v.13 no.4
    • /
    • pp.321-337
    • /
    • 1980
  • The increasing use of cardioplegic solution for the reduction of ischemic tissue injury requires that all cardiplegic solution be carefully assessed for any protective or damaging properties. This study describes functional, enzymatic and structural assessment of the efficiency of three cardioplegic solutions (Young & GIK, Bretschneider, and $K^{+}$ Albumin solution) in a Modified Isolated Rat Heart Model of cardiopulmonary bypass and ischemic arrest. Isolated rat heart were subjected to a 2-minute period of coronary infusion with a cold cardioplegic or a noncardioplegic solution immediately before and also at the midpoint of a 60-minute period of hypothermic ($10{\pm}1$. C) ischemic cardiac arrest. The results of this study were as follow: 1. Spontaneous heart beat after ischemic arrest occured 16 seconds later after Langendorff reperfusion in the Young & GIK group (n=6), and 40 second later in the Bretschneider group (n=6) and 6 minute later in the $K^{+}$ Albumin group (n=6), and 16 minute later in the control group (non-cardioplegia). A good recovery state of spontaneous heart beat was shown in the Young & GIK and Bretschneider groups. 2. The percentage of recorveries of heart function at 30 minute after postischemic working heart perfusion were : heart rate $91.6{\pm}3.1$% (P<0.01)m oeaj airtuc oressyre $83{\pm}3$% (P<0.01), coronary flow $70{\pm}8$% (P<0.05) and aortic flow flow rate $39{\pm}9.3$% (P<0.05) in the Young & GIK group. This percentage of recoveries of the Young & GIK group was significantly greater than the control group. In the Bretschneider group, the percentage of recoveries were : heart rate $87.8{\pm}7.5$%(P<0.05), peak aortic pressure $71{\pm}2.3$% (P<0.05) and aortic flow rate $33.2{\pm}6.6$%(P<0.05). hte percentage of recoveries were significantly greater than in the control group. In the $K^{+}$ Albumin group, recoveries of heart function were poor. 3. Total CPK leakage was $131.2{\pm}12.75$IU/30 min/gm. dry weight in the control group, $50.65{\pm}12.75$IU in the Young & GIK gruop, $69.40{\pm}32.21$Iu in Bretschneider group, and $103.65{\pm}15.47$IU in the $K^{+}$ Albumin group during the 30 minute postischemic Langendorff reperfusion. Total CPK leakage was significantly less (P<0.001) in the Young & GIK group, than in the control group. 4. Direct correlatin between percentage recovery of aortic flow rate and total amount of CPK leakage from Myocardium was noticed.(Correlation Coefficient r = 0.76, P<0.001). 5. Mild perivascular edema was the only finding of light microscopic study of myocardium after 60 minute ischemic arrest with cold cardioplegic solutions and hypothermla.

  • PDF

Effects of $Zhiyin$($BL_{67}$) and $Shangyang$($LI_1$) Reinforcement in Acupuncture on the Changes of Cerebral Blood Flow and Blood Pressure in Rats (지음(至陰)($BL_{67}$).상양(商陽)($LI_1$) 보법(補法) 자침이 백서(白鼠)의 뇌혈류량 및 혈압에 미치는 영향)

  • Chun, Hea-Sun;Cho, Myeong-Rae
    • Journal of Acupuncture Research
    • /
    • v.29 no.2
    • /
    • pp.73-88
    • /
    • 2012
  • Objectives : The purpose of this study is to research the effects of acupuncturing $BL_{67}$ and $LI_1$ and determine the mechanism of action of acupuncturing $BL_{67}$ and $LI_1$ by measuring the changes of regional cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) in normal rats and ischemic rats. Method : This study researched the effects of acupuncturing $BL_{67}$ and $LI_1$ on the change of rCBF and MABP. To determine the mechanism of action of acupuncturing $BL_{67}$ and $LI_1$, pretreatment with indomethacine and methylene blue was done. Result : 1. Acupuncturing $BL_{67}$ and $LI_1$ significantly increased rCBF and acupuncturing $BL_{67}$ and $LI_1$ induced increase of rCBF was significantly inhibited by pretreatment with indomethacin(1 mg/kg, i.p.), an inhibitor of cyclooxygenase, and methylene blue(10 ${\mu}g$/kg, i.p.), an inhibitor of guanylate cyclase. 2. Acupuncturing $BL_{67}$ and $LI_1$ decreased MABP and there was no significantly change of decrease of MABP on acupuncturing $BL_{67}$ and $LI_1$ by pretreatment with indomethacin and methylene blue. 3. These result suggested that acupuncturing $BL_{67}$ and $LI_1$ might significantly increase rCBF by dilating arterial diameter and mechanism of acupuncturing $BL_{67}$ and $LI_1$ might be mediated by cyclooxygenase and guanylate cyclase. 4. The rCBF was significantly and stably increased by acupuncturing $BL_{67}$ and $LI_1$ during the period of cerebral reperfusion in cerebral ischemic rats, which contrasted with the rapid and marked increase in the control group. Pretreatment with methylene blue significantly decreased rCBF by acupuncturing $BL_{67}$ and $LI_1$ during the period of ischemic state, increased rCBF during the period of cerebral reperfusion. These results suggested that the mechanism of acupuncturing $BL_{67}$ and $LI_1$ might be mediated by guanylate cyclase. Conclusion : Acupuncturing $BL_{67}$ and $LI_1$ can increase rCBF in normal state, and improve stability of rCBF in ischemic state. In addition, we suggested that mechanisms related with acupuncturing $BL_{67}$ and $LI_1$ was more involved in the guanylate cyclase pathway.

NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts

  • Thu, Vu Thi;Kim, Hyoung Kyu;Long, Le Thanh;Thuy, To Thanh;Huy, Nguyen Quang;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2016
  • Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating inflammation and fibrosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 ($10{\mu}mol/L$) treatment as experimental models. Addition of NecroX-5 significantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 ($TGF{\beta}1$) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, significantly increased production of tumor necrosis factor alpha ($TNF{\alpha}$), $TGF{\beta}1$, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of $TNF{\alpha}$, $TGF{\beta}1$, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the $TNF{\alpha}/Dcn/TGF{\beta}1/Smad2$ pathway.

The effect of human mesenchymal stem cell injection on pain behavior in chronic post-ischemia pain mice

  • Yoo, Sie Hyeon;Lee, Sung Hyun;Lee, Seunghwan;Park, Jae Hong;Lee, Seunghyeon;Jin, Heecheol;Park, Hue Jung
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • Background: Neuropathic pain (NP) is considered a clinically incurable condition despite various treatment options due to its diverse causes and complicated disease mechanisms. Since the early 2000s, multipotent human mesenchymal stem cells (hMSCs) have been used in the treatment of NP in animal models. However, the effects of hMSC injections have not been studied in chronic post-ischemia pain (CPIP) mice models. Here, we investigated whether intrathecal (IT) and intrapaw (IP) injections of hMSCs can reduce mechanical allodynia in CPIP model mice. Methods: Seventeen CPIP C57/BL6 mice were selected and randomized into four groups: IT sham (n = 4), IT stem (n = 5), IP sham (n = 4), and IP stem (n = 4). Mice in the IT sham and IT stem groups received an injection of 5 μL saline and 2 × 104 hMSCs, respectively, while mice in the IP sham and IP stem groups received an injection of 5 μL saline and 2 × 105 hMSCs, respectively. Mechanical allodynia was assessed using von Frey filaments from pre-injection to 30 days post-injection. Glial fibrillary acidic protein (GFAP) expression in the spinal cord and dorsal root ganglia were also evaluated. Results: IT and IP injections of hMSCs improved mechanical allodynia. GFAP expression was decreased on day 25 post-injection compared with the sham group. Injections of hMSCs improved allodynia and GFAP expression was decreased compared with the sham group. Conclusions: These results suggested that hMSCs may be also another treatment modality in NP model by ischemia-reperfusion.