• Title/Summary/Keyword: Repeated Structure

Search Result 606, Processing Time 0.023 seconds

A Study on Forming 'Body Schema' for Role Creating (역할 창조를 위한 '몸틀(body schema)' 형성 연구)

  • Song, Hyo-sook
    • Journal of Korean Theatre Studies Association
    • /
    • no.52
    • /
    • pp.319-357
    • /
    • 2014
  • Formation of 'body schema' is the start for actor to create role and becomes the root and the foundation of existing as a role on the stage. For this, an actor needs to form 'scheme of role' with escaping from own 'body schema.' 'Schema of role' is formed by acquiring through synthesizing daily basic actions, namely, walking, standing, sitting, hand stretching, bending, and touching. The body schema, which was made with simple and usual actions, has fundamental significance in a sense of becoming the body in which the past traces in a role are habituated while energy as a role flows. As for the process of forming body schema, an actor first needs to obtain the visualized materials like photo, magazine, picture and image available for seeing a role specifically and clearly based on what analyzed a character. An actor needs to have three-dimensional image available for always recalling it in the head during acting. To do this, image data available for fundamentally capturing routine actions along with body structure are still more useful. Next, the body schema is formed by interaction with environment. Thus, there is a need of passing through the two-time process of forming body schema. Firstly, the body schema is made on routine actions in a role as physical condition of a role in actor's own everyday life. Secondly, the body schema is made on routine actions available for moving efficiently and economically in line with the environment of performance. A theatrical stage is the temporal space of rhythm and rule different from routine space. What forms body schema immediately in the second phase without body schema in the first phase ultimately becomes what exists as actor's own body, not the body of a role. The body schema, which was formed as the second process, is what truly has identity as a role in the ontological aspect, comes to experience the oppositional force in muscle, a qualitative change in energy, and emotional agitation in the physical aspect, and experiences perception, thinking, volition, and even consciousness with the entire body in the cognitive dimension. Thus, the formation of body schema can be known to be just a method of changing even spiritual and emotional layer. Body schema cannot be made if there is no process of embodiment and habit. Embodiment and habit are not simply the repeated, empty and mechanical action in the body. But, habit itself has very important meanings for forming body schema for role creating. First, habit allows the body itself to learn and understand a meaning. Second, habit relies upon environment, thereby allowing an actor of making the habituated body schema to recognize environment. Third, habit makes the mind. The habituated body schema is just the mind and the ego of a person who possesses the body schema. Fourth, habit comes to experience the expansion in energy and the expansion in existence. It may be experienced through interrelation among actor's body, tool, and environment. Fifth, habit makes identity of the body. Hence, this just becomes what secures identity of a role. These implications of habit are the formation of body schema, which is maintained with the body of being remembered firmly through being closely connected with the process of neural adaptation. Finally, it sought for possibility of practice as one method of forming body schema for role creating through Deleuze's '-becoming' theory. As 'actual animal-becoming' is real '-becoming' of forming structural transformation in the physical dimension, it meets with what the formation of body schema pursues actuality and reality. This was explained with a concept as saying of 'all '-becoming' molecular' by Deleuze/Guattari. 'Animal of having imitated animal's characteristic- becoming' is formed by which the body schema relies upon environment. In this way, relationship among the body, tool and environment has influence even upon a change in consciousness, thinking, and emotion, thereby being able to be useful for forming body schema in a sense of possibly experiencing ultimately expansion in role, namely, expansion in existence.

Image Analysis of Angle Changes in the Forearm during Elbow Joint Lateral General Radiography: Evaluation of Humerus Epicondyle and Elbow Joint (팔꿉관절 측방향 일반촬영에서 아래팔뼈 각도 변화에 따른 영상 분석 : 위팔뼈 위관절융기와 팔꿉관절 평가)

  • Hyo-Soo Shin;Hye-Won Jang;Jong-Bae Park;Ki Baek Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.607-614
    • /
    • 2023
  • Clear overlapping of the bilateral epicondyle and proper separation of the elbow joint are crucial for obtaining accurate lateral general radiographs of the elbow. However, due to the complex anatomical structure of the elbow, achieving optimal positioning is challenging, leading to the need for repeated x-ray examinations. Therefore, the purpose of this study was to investigate the angle of the forearm in patients where accurate lateral images of the elbow joint can't be obtained after vertical incidence using a styrofoam device during elbow joint lateral x-ray imaging. Twenty patients were enrolled in our study following the established protocol. First, a vertical x-ray at an angle of 0° between the forearm and the table was taken (control group). Here, if the lateral image of the elbow joint was deemed inadequate, the forearm angle was adjusted using custom-made styrofoam supports with 5° and 10° inclinations (experimental groups). For the evaluation method, two assessors utilized a 5-point Likert scale to assess the images. The reliability of the assessments was analyzed using Cronbach's alpha coefficient. As a result, patients with inadequate overlap of the bilateral epicondyle and separation of the elbow joint in the initial examination (control group) were able to obtain the best images when setting a 10° angle between the forearm and the table. The subjective evaluation was 1.6 ± 0.8 points at 0°, 2.7 ± 0.8 points at 5°, and 4.4 ± 1.3 points at 10°, respectively. The reliability analysis for the angles of 0°, 5°, and 10° yielded Cronbach's alpha values of 0.867, 0.697, and 0.922, respectively. In conclusion, when it is not possible to obtain accurate images using the conventional position and X-ray beam direction, it is considered that by initially acquiring images with an angle of 10° between the forearm and the table, and gradually decreasing the angle while obtaining images, it would be possible to achieve the optimal image while reducing the number of repeat examinations.

The Genealogy of Forbidden Sound -Political Aesthetics of Ambiguity in the Criticism of Japanese Style in Korean Society of the 1960s (일본적인 것, 혹은 금지된 '소리'의 계보 -한일국교정상화 성립기 '왜색(倭色)' 비판담론과 양의성의 정치미학)

  • Jeong, Chang-Hoon
    • Journal of Popular Narrative
    • /
    • v.25 no.1
    • /
    • pp.349-392
    • /
    • 2019
  • In the 1960s of Korea, the normalization of diplomatic relations between Korea and Japan led to a sense of a vigorous anxiety and fear that "Japan will once again come to the Korean peninsula". As a reaction to this, the discourse on the criticism of 'Japanese Style' strongly emerged. If the prior discourse of criticism was to express the national antipathy toward the colonial remnants that had not yet been disposed of, the critical discourse of the 1960s was the wariness of the newly created 'Japanese Style' in popular culture, and to grasp it as a symptomatic phenomenon that 'evil-minded Japan' was revealed. Thus, this new logic of criticism of the 'Japanese Style' had a qualitative difference from the existing ones. It was accompanied by a willingness to inspect and censor the 'masses' that grew up as consumers of transnational 'mass culture' that flowed and chained in the geopolitical order under the Cold War system. Therefore, the topology of 'popular things=Japanese things=consuming things' reveals the paradox of moral demands that existed within Korean society in the 1960s. This was to solidify the divisive circulation structure that caused them to avoid direct contact with the other called 'Japan', but at the same time, get as close to it as ever. It is a repetitive obsession that pushes the other to another side through the moral segregation that strictly draws a line of demarcation between oneself and the other, but on the other hand is attracted to the object and pulls it back to its side. This paper intends to listen to the different voices that have arisen in the repetitive obsession to understand the significance of the dissonance that has been repeated in the contemporary era. This will be an examination of the paradoxical object of Japan that has been repeatedly asked to build the internal control principle of Korean society, or to hide the oppressive and violent side of the power, and that can neither be accepted nor destroyed completely as part of oneself.

Report about First Repeated Sectional Measurements of Water Property in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 최초 연속 물성 단면 관측 보고)

  • GYUCHANG LIM;JONGJIN PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.56-76
    • /
    • 2024
  • We for the first time made a successful longest continuous sectional observation in the East Sea by an underwater glider during 95 days from September 18 to December 21 2020 in the Korea along the 106 Line (129.1 °E ~ 131.5 °E at 37.9 °N) of the regular shipboard measurements by the National Institute of Fishery Science (NIFS) and obtained twelve hydrographic sections with high spatiotemporal resolution. The glider was deployed at 129.1 °E in September 18 and conducted 88-days flight from September 19 to December 15 2020, yielding twelve hydrographic sections, and then recovered at 129.2 °E in December 21 after the last 6 days virtual mooring operation. During the total traveled distance of 2550 km, the estimated deviation from the predetermined zonal path had an average RMS distance of 262 m. Based on these high-resolution long-term glider measurements, we conducted a comparative study with the bi-monthly NIFS measurements in terms of spatial and temporal resolutions, and found distinguished features. One is that spatial features of sub-mesoscale such as sub-mesoscale frontal structure and intensified thermocline were detected only in the glider measurements, mainly due to glider's high spatial resolution. The other is the detection of intramonthly variations from the weekly time series of temperature and salinity, which were extracted from glider's continuous sections. Lastly, there were deviations and bias in measurements from both platforms. We argued these deviations in terms of the time scale of variation, the spatial scale of fixed-point observation, and the calibration status of CTD devices of both platforms.

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF