• Title/Summary/Keyword: Repairing Process

Search Result 132, Processing Time 0.023 seconds

Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials (신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법)

  • 진우석;권재욱;이대길;유애권
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.43-48
    • /
    • 2001
  • To overcome the disadvantages of conventional excavation technology, various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so fat developed have some brawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM(Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

  • PDF

Improvement of strength and prevention of twist strain in sewer pipe using glass fiber and twist prevention band (유리 섬유와 뒤틀림 방지 밴드를 이용한 하수관거의 강도 및 뒤틀림 개선 방안 연구)

  • Hong, Seok In;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • Maintenance of sewer pipe process sewer pipe repairing process is necessary for deterioration of sewer pipe. In this research, analysis on performance (strength and twist strain) of eco-friendly and even expanded liner process using glass fiber and twist prevention band. As a results, tensile strength, bending strength and failure load is increased after the sewer pipe repairing process than advanced research results. And sewer pipe after the this process obtained advantage of prevention of twist strain and economic. After the this research, sewer pipe repairing process using glass fiber and twist prevention band could be suggest the eco-friendly and effective sewer pipe repairing process.

Practical use of computational building information modeling in repairing and maintenance of hospital building- case study

  • Akhoundan, Majid Reza;Khademi, Kia;Bahmanoo, Sam;Wakil, Karzan;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.575-586
    • /
    • 2018
  • Computational Building Information Modeling (BIM) is an intelligent 3D model-based process that provides architecture, engineering, and construction professionals the insight to plan, design, construct, and manage buildings and infrastructure more efficiently. This paper aims at using BIM in Hospitals configurations protection. Infrastructure projects are classified as huge structural projects taking advantage of many resources such as finance, materials, human labor, facilities and time. Immense expenses in infrastructure programs should be allocated to estimating the expected results of these arrangements in domestic economy. Hence, the significance of feasibility studies is inevitable in project construction, in this way the necessity in promoting the strategies and using global contemporary technologies in the process of construction maintenance cannot be neglected. This paper aims at using the building information modeling in covering Imam Khomeini Hospital's equipment. First, the relationship between hospital constructions maintenance and repairing, using the building information modeling, is demonstrated. Then, using library studies, the effective factors of constructions' repairing and maintenance were collected. Finally, the possibilities of adding these factors in Revit software, as one of the most applicable software within BIM is investigated and have been identified in some items, where either this software can enter or the software for supporting the repairing and maintenance phase lacks them. The results clearly indicated that the required graphical factors in construction information modeling can be identified and applied successfully.

A Study on Repairing Retired Underground Buried Pipes Using RTM (RTM을 이용한 노후 지하 매설관의 보수-보강에 관한 연구)

  • 진우석;권재욱;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.249-252
    • /
    • 2000
  • To overcome problems of excavation technology far repairing or replacing underground buried pipes which are worn out or damaged, various trenchless repair-reinforcement technologies have been invented. But these trenchless technologies also have many problems in the aspect of economy and convenience of operation. In this research, the repair-reinforcement process using RTM (Resin Transfer Molding) which can solve problems of present trenchless technologies was developed. The resin wetting and void removal during RTM process to form large composite structures inside of buried pipes were experimentally investigated. From the experiment, it was found that the new technology had advantage over conventional methods by employing appropriate process parameters and void removal vents.

  • PDF

Repair of tendon injury in Taekwondo by nanobiotics

  • Dilong An;Shun Jiang;Tongtong Cai;Wei Tian
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.591-602
    • /
    • 2023
  • In the present study, capability of nanobiotics in repairing tendon injuries commonly occur in Taekwondo sport is investigated and some approaches are proposed. In this regard, a brief review on the types and application of nanobiotics is presented. Their capabilities and limitation are discussed. Next, different type of tendon injuries in Taekwondo athletes are discussed along with their treatment approaches. Based on the presented data, a nano-scale feasible robot model carrying nanobiotics is proposed for repairing tendons. Finite element simulations is also conducted to show the effectiveness of the repairing process using nanorobots equipped with nanobiotics. This repairing procedure is a combination of mechanical and chemical treatments. The results indicated that using nanobiotics on nanorobots arms in the repair of tendon injuries has many benefits. First, drug delivery is directly injected to the target section. Second, Due to the nanorobots small sizes more acute treatment is possible. Finally, since the control of the nanorobots are assisted with computers, the possibility of human error reduces significantly. The proposed method of the present study could be utilized by other scientists and technological industry in developing final nanorobots with nanobiotics carrying capacity.

Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials (신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법)

  • 진우석;권재욱;이대길;유애권
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • To overcome the disadvantages of conventional excavation technology various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so far developed have some drawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM (Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

Laser Processing Technology in Semiconductor and Display Industry (반도체 및 디스플레이 산업에서의 레이저 가공 기술)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • Laser material processing technology is adopted in several industry as alternative process which could overcome weakness and problems of present adopted process, especially semiconductor and display industry. In semiconductor industry, laser photo lithography is doing at front-end level, and cutting, drilling, and marking technology for both wafer and EMC mold package is adopted. Laser cleaning and de-flashing are new rising technology. There are 3 kinds of main display industry which use laser technology - TFT LCD, AMOLED, Touch screen. Laser glass cutting, laser marking, laser direct patterning, laser annealing, laser repairing, laser frit sealing are major application in display industry.

Evaluation of Crack-Repairing Performance in Concrete Using Surface Waves (표면탄성파를 활용한 콘크리트 균열 보수 성능 평가 기법)

  • Ahn, Eunjong;Kim, Hyunjun;Gwon, Seongwoo;Sim, Sung-Han;Lee, Kwang Myong;Shin, Myoungsu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.496-502
    • /
    • 2017
  • The purpose of this study is to investigate the applicability of surface-wave techniques for the evaluation of the crack-repairing performance of an epoxy injection method in concrete. In this study, box-shaped concrete specimens with four different crack depths were made with identical mix proportions. The specimens with different crack depths were completely repaired using the same epoxy injection method. The spectral energy transmission ratio of surface waves is used as an index to differentiate the effects of crack depth and crack-repairing performance. The decrease of spectral energy transmission ratio in accordance with the increase of crack depth was identified before repairing. Furthermore, the spectral energy transmission ratio increased after the crack-repairing process in all specimens. The spectral energy transmission ratio is considered as a great indicator for estimating the crack-repairing performance of the epoxy injection method; the ratio was recovered up to almost 95% of the uncracked condition.

A Study on the Design & Construction Method of Traditional Landscape Space through the 『Imwongyeongjeji』 「Seomyongji」 and the 'Standard Specification for Repairing Cultural Heritages' (『임원경제지』 「섬용지」와 문화재수리 표준시방서를 통해 본 전통조경공간 설계 시공방법)

  • Lee, Jung-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • The purpose of this study is to examine the design & construction methods of the traditional landscape space of the past and the repair and maintenance of cultural heritages to maintain it today. To this end, the method of narrative description, process extraction and construction related to traditional landscaping were compared to each other based on the 『Imwongyeongjeji』 「Seomyongji」 and 'Standard Specification for Repairing Cultural Heritages'. The results are as follows; First, to analyze at the description methods of the 『Imwongyeongjeji』 「Seomyongji」 and 'Standard Specification for Repairing Cultural Heritages' and related processes in the field of traditional landscaping. 『Imwongyeongjeji』 「Seomyongji」 was an encyclopedia of the overall construction method of the living space, describing the location, effect, and advantages and disadvantages of each component and presenting quantitative figures to institutionalize the construction of traditional landscaping spaces. 'Standard Specification for Repairing Cultural Heritages' presented the entire process of repairing cultural heritages, and it is becoming a kind of guide for reference at the site. Among them, foundation construction, roof construction, landscape construction, and fence construction were drawn as items that could be applied to traditional landscaping areas. Second, the traditional landscape space construction method was divided into the processes of foundation construction, roof construction, landscaping construction, and fence construction. Foundation construction is a way of repeating the process of land-tramping. During the construction of the roof, the tile-roofed building was built on top of the rafters and roofed with tiles. And thatched roof was made to a number of rice straws bundles to cover the roof one after the other. Instead of tiles, the stone roof was made of thin and wide stones, and the wooden boards were used for the single roof and the bark roof were constructed with many layers of dried corrugations. Landscape construction mainly consists of the Paving technique through tramping rubble and the construction of terraced flower by planting stone, plants, and shrubs on the top. According to the building materials, the wall construction was derived from the earth-stacked earthen wall, stone walls using stone and clay, marble walls made of tile patterns, and the construction of a board wall using a wood board as a wall. Third, comparing the construction methods of the 『Imwongyeongjeji』 「Seomyongji」 and 'Standard Specification for Repairing Cultural Heritages', 『Imwongyeongjeji』 「Seomyongji」 focuses on standardizing the construction methods to create a new traditional space. There is a difference in the setting of the scope of the 『Imwongyeongjeji』 「Seomyongji」 and the construction because 'Standard Specification for Repairing Cultural Heritages' provides the overall construction procedure considering the diversity of the cultural heritages. In addition, the traditional landscape space used to be a residential space in the past, but today, the maintenance process of the already established facilities as designated cultural heritages has been carried out, and construction methods have been added to create viewing conditions. In terms of the succession of traditional knowledge, some similar methods were found in the repair of cultural assets today, and some cases were also confirmed in the reconstruction of traditional technologies such as application of some materials or mix, separation of added facilities and introduction of efficient construction methods.

A comparison of Health Hazard Effects by Solvent-based and Water-based Painting materials (유용성 도료와 수용성 도료의 유해성 비교에 관한 연구 (자동차 보수용 도료를 중심으로))

  • Kwon, Eun-Hye;Kim, Gwang-Sik;Oh, Jung-Ryong;Choi, Jung-Keun;Jeong, Yoon-Sok;Lee, You-Jin;Kim, Eun-A;Song, Se-Wook;Jung, Ho-Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.17-25
    • /
    • 2001
  • The purpose of this study is to substitute water-based painting materials for the current solvent-based ones used in motor-repairing process to minimize the exposure of organic solvents to the painters. This study assessed the exposure of organic solvents to the painters using water-based and solvent-based painting materials and compared compositions, painting processes and the health hazards of the application of these alternative painting mate rials. The results of this study are as follows. 1. solvent-based painting materials used in motor-repairing process consist of various organic solvents, which consist primarily of toluene, xylene, ethyl benzene, ethyl methyl benzene, trimethyl benzene, ethyl acetate, butyl acetate, methyl isobutyl ketone, 2-ethoxy ethanol, 2-ethoxy ethyl acetate and toluene-2,4-diisocianate and the others. These organic solvents are known as health-hazardous substances. But water-based painting materials are high-solid, low-solvent one sand consist of such two organic solvents as 2-butoxy ethanol and 2-heptanone and the others. 2. The painters us ing solvent-based painting mate rials in motor-repairing process are exposed to various organic solvents which consist of toluene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, trimethyl benzene, 2-ethoxy ethanol, and 2-ethoxy ethyl acetate. But the painters using solvent-based ones are only exposed to 2-butoxy ethanol and 2-heptanone. 3. By using water-based painting materials in stead of solvent-based painting materials containing health-hazardous organic solvents, the exposure of such organic solvents in the painter's breathing zone can be largely prevented. 4. This study recommends water-based painting materials as substitutes for the current solvent-based ones used in motor-repairing process to minimize the exposure of organic solvents to the painters.

  • PDF