• Title/Summary/Keyword: Repair strength

Search Result 705, Processing Time 0.03 seconds

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

REVIEW ARTICLE - Chemical and physical properties and biocompatibility of MTA (MTA의 물리화학적 성질 및 생체친화성에 대한 연구)

  • Chang, Seok-Woo;Oh, Tae-Seok;Yoo, Hyun-Mi;Park, Dong-Sung;Bae, Kwang-Shik;Kum, Kee-Yeon
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.148-154
    • /
    • 2012
  • Mineral trioxide aggregate (MTA) is mainly composed of lime and silica. Its four major phases are tricalcium silicate, dicalcium silicate, tricalcium aluminate, and tetracaclcium aluminoferrite. MTA has relatively long initial setting time (2h 45m) and various additives can be added to reduce setting time. Compressive strength of MTA increases with time and reaches 100 MPa after 28 days. MTA has high pH of 9-12.5 because of the formation of calcium hydroxide during its hydration reaction. MTA has superior sealing ability to amalgam and IRM when it is used in perforation repair or root end filling. MTA is safe in cytotoxicity and genotoxicity and have potential to promote pulpal and periapical hard tissue formation.

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Condition Assessment of Various Types of Road Cavities Using DEM (개별요소법을 활용한 도로하부 동공 상태 평가)

  • Kim, Yeonho;Park, Hyunsu;Kim, Byeongsu;Park, Seong-Wan
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.39-47
    • /
    • 2016
  • PURPOSES : Road subsidence occurs owing to road cavities, which cause many social and environmental problems, especially in cities. Recently, road cavities were detected by various ground radars and repair works were carried out against the detected cavities. The condition assessments related to the road cavities are necessary to understand the potential risk of the cavities. Therefore, in this study, a numerical study was performed to assess the various conditions of road cavities. METHODS : The numerical method adopted in this study is the discrete element approach, and it is suitable for analyzing the condition because it can consider the movement of the soil particles in the surrounded cavity areas. In addition, the triaxial test was modeled and performed under various cavity conditions inside the specimens. RESULTS : The conditions of different cavity locations and shapes were analyzed to identify the effect of cavity state. Three general cases of particle size distributions were formulated to identify the effect of surrounding ground conditions. As a result, the degree of decrement and volumetric strain were varied depending on the locations and shapes of the cavity. Only minor changes were observed when the particle size distributions were altered. CONCLUSIONS : The strength reduction was higher when the cavity formed was larger and located in the upper zone. Similar to the cavity shape, strength reduction and volume deformation are more influenced by the width than the length of the cavities. There is an influence from ground conditions such as the particle size distribution, especially on the wide cavity.

Rehabilitation of a distressed steel roof truss - A study

  • Dar, M.A.;Subramanian, N.;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.567-576
    • /
    • 2017
  • Structural failures are undesirable events that devastate the construction industry resulting in loss of life, injury, huge property loss, and also affect the economy of the region. Roof truss failures occur mainly due to excessive loading, improper fabrication, deterioration, inadequate repair, etc. Although very rare, a roof truss may even fail due to inappropriate location of supports. One such case was reported from the recent failure of a steel roof truss used in an indoor stadium at Kargil in India. Kargil region, being mountainous in nature, receives heavy snowfall and hence the steel roof trusses are designed for heavy snow loads. Due to inappropriate support location, the indoor stadium's steel roof truss had failed under heavy snow load for which it was designed and became an interesting structural engineering problem. The failure observed was primarily in terms of yielding of the bottom chord under the supports, leading to partial collapse of the roof truss. This paper summarizes the results of laboratory tests and analytical studies that focused on the validation of the proposed remedial measure for rehabilitating this distressed steel roof truss. The study presents the evaluation of (i) significant reduction in strength and stiffness of the distressed truss resulting in its failure, (ii) desired recovery in both strength and stiffness of the rectified truss contributed by the proposed remedial measure. Three types of models i.e., ideal truss model, as build truss model and rectified truss model were fabricated and tested under monotonic loading. The structural configuration and support condition varied in all the three models to represent the ideal truss, distressed truss and the rectified truss. To verify the accuracy of the experimental results, an analytical study was carried out and the results of this analytical study are compared with the experimental ones.

Field Application Evaluation of Black VES-LMC (흑색 VES-LMC의 현장적용성 평가)

  • Jung, Won-Kyong;Kil, Yong-Su;Kim, Yong-Bin;Yun, Kyong-Ku
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.177-183
    • /
    • 2011
  • VES-LMC(very-early strength latex modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because it could be opened to the traffic after 3 hours of curing. However, the bright color of VES-LMC disturb driver's sigh. A black VES-LMC, matching to asphalt concrete, was developed and applied at a filed for driver's comfort and safety. The black VES-LMC included 2% carbon black in cement weight ratio. A series of performance evaluation for black VES-LMC was done in terms of field applicability, pavement color and temperature change. The field applicability test result showed that there were no change of workability, slump and air void, and the compressive strengthen developed more than 20MPa after 4 hours of placement. The thermal stress of black VES-LMC was smaller than that of OPC and asphalt concrete, which means the stability of black VES-LMC. The performance evaluation result showed that the black VES-LMC could prevent road icing at below zero temperatures and promote thawing at melting temperature.

A study on the fire resistance method using FR-ECC in long tunnel (고인성내화모르터(FR-ECC)를 사용한 장대터널 내화안전대책에 관한 연구)

  • Kim, Se-Jong;Kim, Dong-Jun;Kwon, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • The spalling phenomenon occurs in high-strength concrete when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis of the factors, the preventing methods from the spalling are known as reduction of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the reduction of temperature increase was proposed as the most effective spalling-preventing method among the spalling-preventing methods. Engineered cementitious composite for fireproof and repair materials was developed in order to protect the new and existing RC structures form exterior deterioration factors such as fire, cloride ion, etc. This study was carried out to estimate the fire-resisting performance of high strength concrete slab or tunnel lining by repaired engineered cementitious composite (ECC) or fiber reinforcement cemetitious composite (FRCC) under fire temperature curve. and them we will descrike the result of HIDA tunnel in Japan.

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.